IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v9y2019icp95-107.html
   My bibliography  Save this article

Nonparametric regression on contaminated functional predictor with application to hyperspectral data

Author

Listed:
  • Ferraty, Frédéric
  • Zullo, Anthony
  • Fauvel, Mathieu

Abstract

Regressing nonparametrically a scalar response on a contaminated random curve observed at some measurement grid may be a hard task. To address this common statistical situation, a kernel presmoothing step is achieved on the noisy functional predictor. After that, the kernel estimator of the regression operator is built using the smoothed functional covariate instead of the original corrupted one. The rate of convergence is stated for this nested-kernel estimator with special attention to high-dimensional setting (i.e. the size of the measurement grid is much larger than the sample size). The proposed method is applied to simulated datasets in order to assess its finite-sample properties. Our methodology is further illustrated on a real hyperspectral dataset involving a supervised classification problem.

Suggested Citation

  • Ferraty, Frédéric & Zullo, Anthony & Fauvel, Mathieu, 2019. "Nonparametric regression on contaminated functional predictor with application to hyperspectral data," Econometrics and Statistics, Elsevier, vol. 9(C), pages 95-107.
  • Handle: RePEc:eee:ecosta:v:9:y:2019:i:c:p:95-107
    DOI: 10.1016/j.ecosta.2017.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306217300138
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2017.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Radchenko & Xinghao Qiao & Gareth M. James, 2015. "Index Models for Sparsely Sampled Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 824-836, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    2. Girard, Stéphane & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Functional estimation of extreme conditional expectiles," Econometrics and Statistics, Elsevier, vol. 21(C), pages 131-158.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    2. Łukasz Smaga & Hidetoshi Matsui, 2018. "A note on variable selection in functional regression via random subspace method," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 455-477, August.
    3. Chiou, Jeng-Min & Yang, Ya-Fang & Chen, Yu-Ting, 2016. "Multivariate functional linear regression and prediction," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 301-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:9:y:2019:i:c:p:95-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.