IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v33y2025icp304-329.html
   My bibliography  Save this article

Covariate balancing for causal inference on categorical and continuous treatments

Author

Listed:
  • Lee, Seong-ho
  • Ma, Yanyuan
  • de Luna, Xavier

Abstract

Novel estimators of causal effects for categorical and continuous treatments are proposed by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining the treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. A data analysis suggests a nonlinear effect of BMI on self-reported health decline among the elderly.

Suggested Citation

  • Lee, Seong-ho & Ma, Yanyuan & de Luna, Xavier, 2025. "Covariate balancing for causal inference on categorical and continuous treatments," Econometrics and Statistics, Elsevier, vol. 33(C), pages 304-329.
  • Handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:304-329
    DOI: 10.1016/j.ecosta.2022.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000077
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:304-329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.