IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v33y2025icp282-303.html
   My bibliography  Save this article

ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control

Author

Listed:
  • Archimbaud, Aurore
  • Boulfani, Feriel
  • Gendre, Xavier
  • Nordhausen, Klaus
  • Ruiz-Gazen, Anne
  • Virta, Joni

Abstract

Multivariate functional anomaly detection has received a large amount of attention recently. Accounting both the time dimension and the correlations between variables is challenging due to the existence of different types of outliers and the dimension of the data. In the context of predictive maintenance and quality control, data sets often contain a large number of functional variables. However, most of the existing methods focus on a small number of functional variables. Moreover, in fields that have high reliability standards, detecting a small number of potential multivariate functional outliers with as few false positives as possible is crucial. In such a context, the adaptation of the Invariant Coordinate Selection (ICS) method from the multivariate to the multivariate functional case is of particular interest. Two extensions of ICS are proposed: point-wise and global. For both methods, the choice of the relevant components together with outlier identification and interpretation are discussed. A comparison is made on a predictive maintenance example from the avionics field and a quality control example from the microelectronics field. It appears that in such a context, point-wise and global ICS with a small number of selected components can be recommended.

Suggested Citation

  • Archimbaud, Aurore & Boulfani, Feriel & Gendre, Xavier & Nordhausen, Klaus & Ruiz-Gazen, Anne & Virta, Joni, 2025. "ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control," Econometrics and Statistics, Elsevier, vol. 33(C), pages 282-303.
  • Handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:282-303
    DOI: 10.1016/j.ecosta.2022.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306222000247
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:33:y:2025:i:c:p:282-303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.