IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v248y2025ics0304407624000630.html
   My bibliography  Save this article

Score-type tests for normal mixtures

Author

Listed:
  • Amengual, Dante
  • Bei, Xinyue
  • Carrasco, Marine
  • Sentana, Enrique

Abstract

Testing normality against discrete normal mixtures is complex because some parameters turn increasingly underidentified along alternative ways of approaching the null, others are inequality constrained, and several higher-order derivatives become identically 0. These problems make the maximum of the alternative model log-likelihood function numerically unreliable. We propose score-type tests asymptotically equivalent to the likelihood ratio as the largest of two simple intuitive statistics that only require estimation under the null. One novelty of our approach is that we treat symmetrically both ways of writing the null hypothesis without excluding any region of the parameter space. We derive the asymptotic distribution of our tests under the null and sequences of local alternatives. We also show that their asymptotic distribution is the same whether applied to observations or standardized residuals from heteroskedastic regression models. Finally, we study their power in simulations and apply them to the residuals of Mincer earnings functions.

Suggested Citation

  • Amengual, Dante & Bei, Xinyue & Carrasco, Marine & Sentana, Enrique, 2025. "Score-type tests for normal mixtures," Journal of Econometrics, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:econom:v:248:y:2025:i:c:s0304407624000630
    DOI: 10.1016/j.jeconom.2024.105717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624000630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Generalized extremum tests; Higher-order identifiability; Likelihood ratio test; Mincer equations;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:248:y:2025:i:c:s0304407624000630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.