IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v247y2025ics0304407624002884.html
   My bibliography  Save this article

Shrinkage estimators for periodic autoregressions

Author

Listed:
  • Paap, Richard
  • Franses, Philip Hans

Abstract

A periodic autoregression [PAR] is a seasonal time series model where the autoregressive parameters vary over the seasons. A drawback of PAR models is that the number of parameters increases dramatically when the number of seasons gets large. Hence, one needs many periods with intra-seasonal data to be able to get reliable parameter estimates. Therefore, these models are rarely applied for weekly or daily observations. In this paper we propose shrinkage estimators which shrink the periodic autoregressive parameters to a common value determined by the data. We derive the asymptotic properties of these estimators in case of a quadratic penalty and we illustrate the bias–variance trade-off. Empirical illustrations show that shrinkage improves forecasting with PAR models.

Suggested Citation

  • Paap, Richard & Franses, Philip Hans, 2025. "Shrinkage estimators for periodic autoregressions," Journal of Econometrics, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407624002884
    DOI: 10.1016/j.jeconom.2024.105937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407624002884
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2024.105937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Periodic autoregression; Shrinkage; Pooling; Ridge; Lasso; Forecasting;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:247:y:2025:i:c:s0304407624002884. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.