IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p843-861.html
   My bibliography  Save this article

Variance–covariance from a metropolis chain on a curved, singular manifold

Author

Listed:
  • Gallant, A. Ronald

Abstract

We consider estimation of variance and covariance from a point cloud that are draws from a posterior distribution that lie on a curved, singular manifold. The motivating application is Bayesian inference regarding a likelihood subject to overidentified moment equations using MCMC (Markov Chain Monte Carlo). The MCMC draws lie on a singular manifold that typically is curved. Variance and covariance are Euclidean concepts. A curved, singular manifold is not typically a Euclidean space. We explore some suggestions on how to adapt a Euclidean concept to a non-Euclidean space then build on them to propose and illustrate appropriate methods.

Suggested Citation

  • Gallant, A. Ronald, 2023. "Variance–covariance from a metropolis chain on a curved, singular manifold," Journal of Econometrics, Elsevier, vol. 235(2), pages 843-861.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:843-861
    DOI: 10.1016/j.jeconom.2022.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622001506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Byrne & Mark Girolami, 2013. "Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 825-845, December.
    2. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
    3. Gallant, A. Ronald, 2022. "Nonparametric Bayes subject to overidentified moment conditions," Journal of Econometrics, Elsevier, vol. 228(1), pages 27-38.
    4. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-390, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    2. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    3. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    4. Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015. "Semiparametric single-index panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
    5. Valderrama, Diego, 2007. "Statistical nonlinearities in the business cycle: A challenge for the canonical RBC model," Journal of Economic Dynamics and Control, Elsevier, vol. 31(9), pages 2957-2983, September.
    6. Del Brio, Esther B. & Perote, Javier, 2012. "Gram–Charlier densities: Maximum likelihood versus the method of moments," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 531-537.
    7. Erik Meijer & Jan Rouwendal, 2006. "Measuring welfare effects in models with random coefficients," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 227-244, March.
    8. Ñíguez, Trino-Manuel & Perote, Javier, 2016. "Multivariate moments expansion density: Application of the dynamic equicorrelation model," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 216-232.
    9. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    10. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    11. Michael W. Brandt & Amir Yaron, 2003. "Time-Consistent No-Arbitrage Models of the Term Structure," NBER Working Papers 9458, National Bureau of Economic Research, Inc.
    12. Wu, Feng & Guan, Zhengfei, 2014. "Efficient Estimation of Risk Attitude with Seminonparametric Risk Modeling," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170625, Agricultural and Applied Economics Association.
    13. repec:dgr:rugsom:00f25 is not listed on IDEAS
    14. Ying Li & Hossein Kazemi, 2007. "Conditional Properties of Hedge Funds: Evidence from Daily Returns," European Financial Management, European Financial Management Association, vol. 13(2), pages 211-238, March.
    15. Antonio Merlo & Áureo de Paula, 2017. "Identification and Estimation of Preference Distributions When Voters Are Ideological," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 84(3), pages 1238-1263.
    16. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    17. Monia Landolsi & Kamel Bel Hadj Miled, 2024. "Semi-Nonparametric Estimation of Energy Demand in Tunisia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(1), pages 254-263, January.
    18. Dalderop, Jeroen, 2023. "Semiparametric estimation of latent variable asset pricing models," Journal of Econometrics, Elsevier, vol. 236(1).
    19. Ignacio Mauleon & Javier Perote, 2000. "Testing densities with financial data: an empirical comparison of the Edgeworth-Sargan density to the Student's t," The European Journal of Finance, Taylor & Francis Journals, vol. 6(2), pages 225-239.
    20. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    21. Tauchen, George E., 1995. "New Minimum Chi-Square Methods in Empirical Finance," Working Papers 95-42, Duke University, Department of Economics.

    More about this item

    Keywords

    Method of moments; Bayesian inference; Simultaneously valid credibility intervals; Point cloud; Curved; Singular manifold;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:843-861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.