IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i1p82-104.html
   My bibliography  Save this article

On the power of the conditional likelihood ratio and related tests for weak-instrument robust inference

Author

Listed:
  • Van de Sijpe, Nicolas
  • Windmeijer, Frank

Abstract

Power curves of the Conditional Likelihood Ratio (CLR) and related tests for testing H0:β=β0 in linear models with a single endogenous variable, y=xβ+u, estimated using potentially weak instrumental variables have been presented for two different designs. One design keeps the variance matrix of the structural and first-stage errors, Σ, constant, the other instead keeps the variance matrix of the reduced-form and first-stage errors, Ω, constant. The values of Σ govern the endogeneity features of the model. The fixed-Ω design changes these endogeneity features with changing values of β in a way that makes it less suitable for an analysis of the behaviour of the tests in low to moderate endogeneity settings, or when β and the correlation of the structural and first-stage errors, ρuv, have the same sign. At larger values of |β|, the fixed-Ω design implicitly selects values for Σ where the power of the CLR test is high. We further show that the Likelihood Ratio statistic is identical to the t0(βˆL)2 statistic as proposed by Mills et al. (2014), where βˆL is the Liml estimator. In fixed-Σ design Monte Carlo simulations, we find that Liml- and Fuller-based conditional Wald tests and the Fuller-based conditional t02 test are more powerful than the CLR test when the degree of endogeneity is low to moderate. The conditional Wald tests are further the most powerful of these tests when β and ρuv have the same sign. We show that in the fixed-Ω design, setting β0=0 and the diagonal elements of Ω equal to 1 is not without loss of generality, unlike in the fixed-Σ design.

Suggested Citation

  • Van de Sijpe, Nicolas & Windmeijer, Frank, 2023. "On the power of the conditional likelihood ratio and related tests for weak-instrument robust inference," Journal of Econometrics, Elsevier, vol. 235(1), pages 82-104.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:1:p:82-104
    DOI: 10.1016/j.jeconom.2022.02.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.02.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Frank Windmeijer, 2018. "Testing Over- and Underidentification in Linear Models, with Applications to Dynamic Panel Data and Asset-Pricing Models," Bristol Economics Discussion Papers 18/696, School of Economics, University of Bristol, UK.
    2. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    3. Donald W. K. Andrews & Vadim Marmer & Zhengfei Yu, 2019. "On optimal inference in the linear IV model," Quantitative Economics, Econometric Society, vol. 10(2), pages 457-485, May.
    4. Chernozhukov, Victor & Hansen, Christian, 2008. "The reduced form: A simple approach to inference with weak instruments," Economics Letters, Elsevier, vol. 100(1), pages 68-71, July.
    5. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.
    6. Angrist, Joshua & Kolesár, Michal, 2024. "One instrument to rule them all: The bias and coverage of just-ID IV," Journal of Econometrics, Elsevier, vol. 240(2).
    7. Andrews,Donald W. K. & Stock,James H. (ed.), 2005. "Identification and Inference for Econometric Models," Cambridge Books, Cambridge University Press, number 9780521844413, September.
    8. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 38(2), pages 112-134.
    9. Fuller, Wayne A, 1977. "Some Properties of a Modification of the Limited Information Estimator," Econometrica, Econometric Society, vol. 45(4), pages 939-953, May.
    10. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    11. Anna Mikusheva & Brian P. Poi, 2006. "Tests and confidence sets with correct size when instruments are potentially weak," Stata Journal, StataCorp LP, vol. 6(3), pages 335-347, September.
    12. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    13. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    14. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    15. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    16. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    17. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
    18. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    19. Hausman, Jerry A., 1983. "Specification and estimation of simultaneous equation models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 1, chapter 7, pages 391-448, Elsevier.
    20. Hillier, Grant, 2009. "Exact Properties Of The Conditional Likelihood Ratio Test In An Iv Regression Model," Econometric Theory, Cambridge University Press, vol. 25(4), pages 915-957, August.
    21. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    22. Poskitt, D.S. & Skeels, C.L., 2008. "Conceptual frameworks and experimental design in simultaneous equations," Economics Letters, Elsevier, vol. 100(1), pages 138-142, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keane, Michael & Neal, Timothy, 2023. "Instrument strength in IV estimation and inference: A guide to theory and practice," Journal of Econometrics, Elsevier, vol. 235(2), pages 1625-1653.
    2. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    3. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    4. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    5. Mikusheva, Anna, 2013. "Survey on statistical inferences in weakly-identified instrumental variable models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 29(1), pages 117-131.
    6. Mills, Benjamin & Moreira, Marcelo J. & Vilela, Lucas P., 2014. "Tests based on t-statistics for IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 182(2), pages 351-363.
    7. Michael Keane & Timothy Neal, 2021. "A Practical Guide to Weak Instruments," Discussion Papers 2021-05b, School of Economics, The University of New South Wales.
    8. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    9. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    10. David S. Lee & Justin McCrary & Marcelo J. Moreira & Jack Porter, 2022. "Valid t-Ratio Inference for IV," American Economic Review, American Economic Association, vol. 112(10), pages 3260-3290, October.
    11. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    12. Moreira, Humberto & Moreira, Marcelo J., 2019. "Optimal two-sided tests for instrumental variables regression with heteroskedastic and autocorrelated errors," Journal of Econometrics, Elsevier, vol. 213(2), pages 398-433.
    13. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    14. Marcelo Moreira & Geert Ridder, 2019. "Efficiency loss of asymptotically efficient tests in an instrumental variables regression," CeMMAP working papers CWP03/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    15. Andrews, Donald W.K. & Moreira, Marcelo J. & Stock, James H., 2007. "Performance of conditional Wald tests in IV regression with weak instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 116-132, July.
    16. Michael P. Murray, 2006. "Avoiding Invalid Instruments and Coping with Weak Instruments," Journal of Economic Perspectives, American Economic Association, vol. 20(4), pages 111-132, Fall.
    17. Bertille Antoine & Pascal Lavergne, 2020. "Identification-Robust Nonparametric Interference in a Linear IV Model," Discussion Papers dp20-03, Department of Economics, Simon Fraser University.
    18. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
    19. Mikusheva, Anna, 2010. "Robust confidence sets in the presence of weak instruments," Journal of Econometrics, Elsevier, vol. 157(2), pages 236-247, August.
    20. Michael Keane & Timothy Neal, 2021. "A New Perspective on Weak Instruments," Discussion Papers 2021-05a, School of Economics, The University of New South Wales.

    More about this item

    Keywords

    Instrumental variables; Weak-instrument robust inference; Conditional likelihood ratio test; Power;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C26 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:1:p:82-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.