IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i1p180-201.html
   My bibliography  Save this article

Time series estimation of the dynamic effects of disaster-type shocks

Author

Listed:
  • Davis, Richard
  • Ng, Serena

Abstract

This paper provides three results for SVARs under the assumption that the primitive shocks are mutually independent. First, a framework is proposed to accommodate a disaster-type variable with infinite variance into a SVAR. We show that the least squares estimates of the SVAR are consistent but have non-standard asymptotics. Second, the disaster shock is identified as the component with the largest kurtosis. An estimator that is robust to infinite variance is used to recover the mutually independent components. Third, an independence test on the residuals pre-whitened by the Choleski decomposition is proposed to test the restrictions imposed on a SVAR. The test can be applied whether the data have fat or thin tails, and to over as well as exactly identified models. Three applications are considered. In the first, the independence test is used to shed light on the conflicting evidence regarding the role of uncertainty in economic fluctuations. In the second, disaster shocks are shown to have short term economic impact arising mostly from feedback dynamics. The third uses the framework to study the dynamic effects of economic shocks post-covid.

Suggested Citation

  • Davis, Richard & Ng, Serena, 2023. "Time series estimation of the dynamic effects of disaster-type shocks," Journal of Econometrics, Elsevier, vol. 235(1), pages 180-201.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:1:p:180-201
    DOI: 10.1016/j.jeconom.2022.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407622000665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gouriéroux, Christian & Monfort, Alain & Renne, Jean-Paul, 2017. "Statistical inference for independent component analysis: Application to structural VAR models," Journal of Econometrics, Elsevier, vol. 196(1), pages 111-126.
    2. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2022. "Moment tests of independent components," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 429-474, May.
    3. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    4. José Luis Montiel Olea & Mikkel Plagborg-Møller & Eric Qian, 2022. "SVAR Identification from Higher Moments: Has the Simultaneous Causality Problem Been Solved?," AEA Papers and Proceedings, American Economic Association, vol. 112, pages 481-485, May.
    5. Kadiyala, Koteswara Rao, 1972. "Regression with Non-Gaussian Stable Disturbances: Some Sampling Results," Econometrica, Econometric Society, vol. 40(4), pages 719-722, July.
    6. Wan, Phyllis & Davis, Richard A., 2022. "Goodness-of-fit testing for time series models via distance covariance," Journal of Econometrics, Elsevier, vol. 227(1), pages 4-24.
    7. W J Wouter Botzen & Olivier Deschenes & Mark Sanders, 2019. "The Economic Impacts of Natural Disasters: A Review of Models and Empirical Studies," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(2), pages 167-188.
    8. Alessio Moneta & Doris Entner & Patrik O. Hoyer & Alex Coad, 2013. "Causal Inference by Independent Component Analysis: Theory and Applications," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(5), pages 705-730, October.
    9. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    10. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    11. Kilian,Lutz & Lütkepohl,Helmut, 2018. "Structural Vector Autoregressive Analysis," Cambridge Books, Cambridge University Press, number 9781107196575, September.
    12. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "COVID-19 and the Costs of Deadly Disasters," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 366-370, May.
    13. Beare, Brendan K & Toda, Alexis Akira, 2020. "On the emergence of a power law in the distribution of COVID-19 cases," University of California at San Diego, Economics Working Paper Series qt9k5027d0, Department of Economics, UC San Diego.
    14. David S. Matteson & Ruey S. Tsay, 2017. "Independent Component Analysis via Distance Covariance," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 623-637, April.
    15. Serena Ng, 2021. "Modeling Macroeconomic Variations after Covid-19," NBER Working Papers 29060, National Bureau of Economic Research, Inc.
    16. repec:taf:jnlbes:v:30:y:2012:i:3:p:381-390 is not listed on IDEAS
    17. Maxand, Simone, 2020. "Identification of independent structural shocks in the presence of multiple Gaussian components," Econometrics and Statistics, Elsevier, vol. 16(C), pages 55-68.
    18. Marc Paolella & Eric Renault & Gennady Samorodnitsky & David Veredas, 2013. "Latest developments in heavy-tailed distributions," ULB Institutional Repository 2013/136284, ULB -- Universite Libre de Bruxelles.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Lewis, 2024. "Identification based on higher moments," CeMMAP working papers 03/24, Institute for Fiscal Studies.
    2. Jetro Anttonen & Markku Lanne & Jani Luoto, 2024. "Statistically identified structural VAR model with potentially skewed and fat‐tailed errors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 422-437, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fiorentini, Gabriele & Sentana, Enrique, 2023. "Discrete mixtures of normals pseudo maximum likelihood estimators of structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 643-665.
    2. Gabriele Fiorentini & Alessio Moneta & Francesca Papagni, 2024. "Identification of one independent shock in structural VARs," LEM Papers Series 2024/28, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Herwartz, Helmut & Lange, Alexander & Maxand, Simone, 2019. "Statistical identification in SVARs - Monte Carlo experiments and a comparative assessment of the role of economic uncertainties for the US business cycle," University of Göttingen Working Papers in Economics 375, University of Goettingen, Department of Economics.
    4. Brandts, Jordi & El Baroudi, Sabrine & Huber, Stefanie J. & Rott, Christina, 2021. "Gender differences in private and public goal setting," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 222-247.
    5. Moneta, Alessio & Pallante, Gianluca, 2022. "Identification of Structural VAR Models via Independent Component Analysis: A Performance Evaluation Study," Journal of Economic Dynamics and Control, Elsevier, vol. 144(C).
    6. Helmut Herwartz & Alexander Lange & Simone Maxand, 2022. "Data‐driven identification in SVARs—When and how can statistical characteristics be used to unravel causal relationships?," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 668-693, April.
    7. Lukas Hoesch & Adam Lee & Geert Mesters, 2022. "Robust inference for non-Gaussian SVAR models," Economics Working Papers 1847, Department of Economics and Business, Universitat Pompeu Fabra.
    8. Kerstin Bernoth & Helmut Herwartz & Lasse Trienens, 2023. "The Impacts of Global Risk and US Monetary Policy on US Dollar Exchange Rates and Excess Currency Returns," Discussion Papers of DIW Berlin 2037, DIW Berlin, German Institute for Economic Research.
    9. Lukas Hoesch & Adam Lee & Geert Mesters, 2022. "Locally Robust Inference for Non-Gaussian SVAR Models," Working Papers 1367, Barcelona School of Economics.
    10. Bernoth, Kerstin & Herwartz, Helmut, 2021. "Exchange rates, foreign currency exposure and sovereign risk," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 117, pages 1-1.
    11. Helmut Herwartz & Alexander Lange, 2024. "How certain are we about the role of uncertainty in the economy?," Economic Inquiry, Western Economic Association International, vol. 62(1), pages 126-149, January.
    12. Michael Ryan, 2020. "An Anchor in Stormy Seas: Does Reforming Economic Institutions Reduce Uncertainty? Evidence from New Zealand," Working Papers in Economics 20/11, University of Waikato.
    13. Jafari, Mahboubeh & Stern, David I. & Bruns, Stephan B., 2022. "How large is the economy-wide rebound effect in middle income countries? Evidence from Iran," Ecological Economics, Elsevier, vol. 193(C).
    14. Helmut Herwartz & Shu Wang, 2024. "Statistical identification in panel structural vector autoregressive models based on independence criteria," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 620-639, June.
    15. Ansgar Belke & Pascal Goemans, 2021. "Uncertainty and nonlinear macroeconomic effects of fiscal policy in the US: a SEIVAR-based analysis," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 49(4), pages 623-646, May.
    16. Bruns, Stephan B. & Moneta, Alessio & Stern, David I., 2021. "Estimating the economy-wide rebound effect using empirically identified structural vector autoregressions," Energy Economics, Elsevier, vol. 97(C).
    17. Herwartz, Helmut & Maxand, Simone & Rohloff, Hannes, 2018. "Lean against the wind or float with the storm? Revisiting the monetary policy asset price nexus by means of a novel statistical identification approach," University of Göttingen Working Papers in Economics 354, University of Goettingen, Department of Economics.
    18. Bernoth, Kerstin & Herwartz, Helmut & Trienens, Lasse, 2024. "Interest Rates, Convenience Yields and Inflation Expectations: Drivers of US Dollar Exchange Rates," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302351, Verein für Socialpolitik / German Economic Association, revised 2024.
    19. Bernoth, Kerstin & Herwartz, Helmut & Trienens, Lasse, 2024. "Interest Rates, Convenience Yields and Inflation Expectations: Drivers of US Dollar Exchange Rates," VfS Annual Conference 2024 (Berlin): Upcoming Labor Market Challenges 302351, Verein für Socialpolitik / German Economic Association, revised 2024.
    20. Cordoni, Francesco & Dorémus, Nicolas & Moneta, Alessio, 2024. "Identification of vector autoregressive models with nonlinear contemporaneous structure," Journal of Economic Dynamics and Control, Elsevier, vol. 162(C).

    More about this item

    Keywords

    Heavy-tails; Independent component analysis; Distance covariance;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:1:p:180-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.