IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v138y2007i1p231-251.html
   My bibliography  Save this article

Seasonality and non-linear price effects in scanner-data-based market-response models

Author

Listed:
  • Fok, Dennis
  • Hans Franses, Philip
  • Paap, Richard

Abstract

Scanner data for fast moving consumer goods typically amount to panels of time series where both N and T are large. To reduce the number of parameters and to shrink parameters towards plausible and interpretable values, multi-level models turn out to be useful. Such models contain in the second level a stochastic model to describe the parameters in the first level. In this paper we propose such a model for weekly scanner data where we explicitly address (i) weekly seasonality in a limited number of yearly data and (ii) non-linear price effects due to historic reference prices. We discuss representation and inference and we propose an estimation method using Bayesian techniques. An illustration to a market-response model for 96 brands for about 8 years of weekly data shows the merits of our approach.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Fok, Dennis & Hans Franses, Philip & Paap, Richard, 2007. "Seasonality and non-linear price effects in scanner-data-based market-response models," Journal of Econometrics, Elsevier, vol. 138(1), pages 231-251, May.
  • Handle: RePEc:eee:econom:v:138:y:2007:i:1:p:231-251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4076(06)00094-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hendricks, Wallace & Koenker, Roger & Poirier, Dale J., 1979. "Residential demand for electricity : An econometric approach," Journal of Econometrics, Elsevier, vol. 9(1-2), pages 33-57, January.
    2. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, October.
    3. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Venera Timiryanova & Irina Lakman & Vadim Prudnikov & Dina Krasnoselskaya, 2022. "Spatial Dependence of Average Prices for Product Categories and Its Change over Time: Evidence from Daily Data," Forecasting, MDPI, vol. 5(1), pages 1-25, December.
    2. Yuri Peers & Dennis Fok & Philip Hans Franses, 2012. "Modeling Seasonality in New Product Diffusion," Marketing Science, INFORMS, vol. 31(2), pages 351-364, March.
    3. Qi Feng & Sirong Luo & Dan Zhang, 2014. "Dynamic Inventory–Pricing Control Under Backorder: Demand Estimation and Policy Optimization," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 149-160, February.
    4. Guidolin, Mariangela & Guseo, Renato, 2014. "Modelling seasonality in innovation diffusion," Technological Forecasting and Social Change, Elsevier, vol. 86(C), pages 33-40.
    5. Haupt, Harry & Kagerer, Kathrin, 2012. "Beyond mean estimates of price and promotional effects in scanner-panel sales–response regression," Journal of Retailing and Consumer Services, Elsevier, vol. 19(5), pages 470-483.
    6. Wolters, Jannik & Huchzermeier, Arnd, 2021. "Joint In-Season and Out-of-Season Promotion Demand Forecasting in a Retail Environment," Journal of Retailing, Elsevier, vol. 97(4), pages 726-745.
    7. Rishab Guha & Serena Ng, 2019. "A Machine Learning Analysis of Seasonal and Cyclical Sales in Weekly Scanner Data," NBER Chapters, in: Big Data for Twenty-First-Century Economic Statistics, pages 403-436, National Bureau of Economic Research, Inc.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    2. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    3. Calmès, Christian & Théoret, Raymond, 2020. "Bank fee-based shocks and the U.S. business cycle," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    4. Param Silvapulle & Titi Kanti Lestari & Jae Kim, 2004. "Nonlinear Modelling of Purchasing Power Parity in Indonesia," Econometric Society 2004 Australasian Meetings 316, Econometric Society.
    5. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    6. Ventosa-Santaulària, Daniel & Mendoza V., Alfonso, 2005. "Non Linear Moving-Average Conditional Heteroskedasticity," MPRA Paper 58769, University Library of Munich, Germany.
    7. Daniel Ventosa-Santaularia & Alfonso Mendoza, 2005. "Non Linear Moving-Average Conditional Heteroskedasticity," Department of Economics and Finance Working Papers EM200502, Universidad de Guanajuato, Department of Economics and Finance.
    8. Berenguer-Rico, Vanessa & Gonzalo, Jesús, 2014. "Summability of stochastic processes—A generalization of integration for non-linear processes," Journal of Econometrics, Elsevier, vol. 178(P2), pages 331-341.
    9. Mário Jorge Cardoso de Mendonça & Cláudio Hamilton Matos dos Santos, 2008. "Revisitando a Função de Reação Fiscal no Brasil Pós-Real: Uma Abordagem de Mudanças de Regime," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807171729460, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    10. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    11. Ece C. KARADAGLI & Nazlı C. OMAY, 2012. "Testing Weak Form Market Efficiency Of Emerging Markets: A Nonlinear Approach," Journal of Applied Economic Sciences, Spiru Haret University, Faculty of Financial Management and Accounting Craiova, vol. 7(3(21)/ Fa), pages 235-245.
    12. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    13. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    14. Switzer, Lorne N. & Picard, Alan, 2016. "Stock market liquidity and economic cycles: A non-linear approach," Economic Modelling, Elsevier, vol. 57(C), pages 106-119.
    15. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601, December.
    16. Khémiri, Wafa & Noubbigh, Hédi, 2020. "Size-threshold effect in debt-firm performance nexus in the sub-Saharan region: A Panel Smooth Transition Regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 335-344.
    17. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    18. Carlo Altavilla & Paul De Grauwe, 2010. "Forecasting and combining competing models of exchange rate determination," Applied Economics, Taylor & Francis Journals, vol. 42(27), pages 3455-3480.
    19. Alex Cukierman & Anton Muscatelli, 2001. "Do Central Banks have Precautionary Demands for Expansions and for Price Stability?," Working Papers 2002_4, Business School - Economics, University of Glasgow, revised Mar 2002.
    20. Anton Muscatelli & Patrizio Tirelli & Carmine Trecroci, 2001. "Monetary and Fiscal Policy Interactions over the Cycle: Some Empirical Evidence," Working Papers 2002_13, Business School - Economics, University of Glasgow, revised Oct 2002.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:138:y:2007:i:1:p:231-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.