IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v503y2025ics0304380025000535.html
   My bibliography  Save this article

Climate warming will significantly affect future restoration and level of ecosystem services in Lake Erhai

Author

Listed:
  • Qin, Bo
  • Xu, Min
  • Zhu, Kexin
  • Zhao, Yanjie
  • Zhang, Enlou
  • Wang, Rong

Abstract

Freshwater ecosystems have been degraded under the recent impacts of global warming and human activities. Reducing external nutrient loadings is the primary strategy for restoring lake state and ecosystem services, but overlooking the impact of warming may hinder its long-term effectiveness. In order to investigate such an impact, this study simulated potential ecosystem responses between 2020 and 2050 using the PCLake model in a typical lake under restoration (Lake Erhai) in southwestern China. Calibrated based on observations from 1990 to 2020, the model could well simulate the long-term changes in Lake Erhai, including the regime shift around 2002. Under further bivariate scenarios, results of current nutrient input showed that warming above 1.2 °C would cause declines of macrophyte coverage 0–7 years in advance. In 2050, the overall change of ecosystem services would be positive if warming remains below 1.2 °C but negative if warming exceeds 2.2 °C. The above warming levels could be viewed as delineations of the safe and dangerous warming zones for ecosystem status and service in Lake Erhai under current restoration strength. The impact of warming would be more intuitive under the absence of nutrient control, i.e., both slow and fast warming would advance macrophyte decline and decrease overall ecosystem services. This study combined perspectives of regime shift and ecosystem service loss to highlight the need for climate-adaptive management, which may provide a new research paradigm to evaluate warming impacts on lake restorations beyond the study site.

Suggested Citation

  • Qin, Bo & Xu, Min & Zhu, Kexin & Zhao, Yanjie & Zhang, Enlou & Wang, Rong, 2025. "Climate warming will significantly affect future restoration and level of ecosystem services in Lake Erhai," Ecological Modelling, Elsevier, vol. 503(C).
  • Handle: RePEc:eee:ecomod:v:503:y:2025:i:c:s0304380025000535
    DOI: 10.1016/j.ecolmodel.2025.111067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000535
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:503:y:2025:i:c:s0304380025000535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.