Author
Listed:
- Saylor, Rick D.
- Walker, John T.
- Wu, Zhiyong
- Chen, Xi
- Schwede, Donna B.
- Oishi, A.Christopher
- Lichiheb, Nebila
Abstract
Ammonia (NH3) concentration and flux measurements made in 2016 in a mixed deciduous forest at the western North Carolina Coweeta Hydrologic Laboratory are analyzed using a multi-layer, one-dimensional column model with detailed canopy physics and bi-directional exchange. Simulations for April 26–30 and July 19–30 are presented to assess the model's ability to represent measured in-canopy NH3 profiles and probe the processes that control bi-directional exchange with the canopy and forest floor. During dry canopy conditions, model simulations are found to well reproduce measured in-canopy profiles for both the April and July periods, given appropriate model inputs. Results from the model, and the shape of in-canopy NH3 profiles, are sensitive to vertical turbulent mixing, the values of the input soil/litter emission potential, and the assumed litter resistance. NH3 fluxes simulated above the forest canopy are very small (-25 to -5 ng m-2 s-1 in April and < 1 ng m-2 s-1 in July) with primarily deposition to the canopy during the April time period, but with mixed deposition/emission during July. The model also suggests that net deposition or emission of NH3 can be a function of location within the canopy, depending on the difference between the air concentration and the effective canopy compensation point. However, during periods when the canopy is wet from overnight dew and drying rapidly, the model does a poor job of replicating in-canopy profiles, typically underestimating NH3 concentrations, since the model does not account for the release of NH3 from evaporating dew. Although available data during the field campaign are not sufficient to rule out other potential hypotheses, given that the model reasonably reproduces in-canopy profiles during dry canopy periods, but fails during periods of rapid drying, the results are suggestive that dew is playing a major role in NH3 concentration changes observed in July during the field study. Additional studies and measurements are needed to determine the processes and environmental controls that affect NH3 absorption and release from dew and to evaluate the importance of this process for modeling deposition and re-emission on the regional scale. Further questions that arise from our findings are whether the variation of NH3 deposition or emission with location in the canopy is important from an ecological perspective and how in-canopy dynamics might be represented in regional-scale air quality models. Traditional big-leaf approaches of modeling NH3 bi-directional exchange cannot account for in-canopy variation such as that presented here, and so multi-layer approaches may need to be developed for more nuanced estimates of NH3 deposition to forest ecosystems.
Suggested Citation
Saylor, Rick D. & Walker, John T. & Wu, Zhiyong & Chen, Xi & Schwede, Donna B. & Oishi, A.Christopher & Lichiheb, Nebila, 2025.
"Dynamic ammonia exchange within a mixed deciduous forest canopy in the Southern Appalachians,"
Ecological Modelling, Elsevier, vol. 501(C).
Handle:
RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003958
DOI: 10.1016/j.ecolmodel.2024.111007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003958. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.