IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v501y2025ics0304380024003715.html
   My bibliography  Save this article

Effects of phenotypic plasticity on diversification rates and adaptive evolution in simulated environments with different climatic and cost contexts

Author

Listed:
  • Barbosa Júnior, Emerson Campos
  • Dodonov, Pavel
  • Japyassú, Hilton F.
  • Vilela, Bruno

Abstract

Phenotypic plasticity can either hinder or facilitate genetic evolution, thus affecting macroevolution. However, the mechanisms and associations of phenotypic plasticity with biodiversity patterns remain unresolved. We investigated the effect of phenotypic plasticity on adaptive evolution in the context of climatic changes and plasticity costs, specifically examining the rates of trait evolution, speciation, extinction, and diversification. We employed an eco-evolutionary agent-based model, incorporating body temperature as a plastic trait that dynamically responds to fluctuations in environmental temperature. In all simulated scenarios, we found that an increase in plasticity led to a decrease in extinction and trait evolution rates. Speciation rates exhibited a non-linear relationship with plasticity, characterized by an asymmetric U-shaped curve. This intricate speciation pattern likely arises from the interplay of two conflicting forces: (1) low extinction rates foster larger population and range sizes, thereby augmenting the potential for speciation; (2) reduced trait evolution, stemming from stable selection, enhances population homogenization and connectivity, consequently inhibiting speciation. Still, overall diversification tends to increase with plasticity. In sum, our simulation unveils potential mechanisms through which phenotypic plasticity could affect macroevolution – specifically, our results support the hypothesis that plasticity should promote diversification, mainly by reducing extinction, while at the same time reducing the rate of change in the plastic trait.

Suggested Citation

  • Barbosa Júnior, Emerson Campos & Dodonov, Pavel & Japyassú, Hilton F. & Vilela, Bruno, 2025. "Effects of phenotypic plasticity on diversification rates and adaptive evolution in simulated environments with different climatic and cost contexts," Ecological Modelling, Elsevier, vol. 501(C).
  • Handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003715
    DOI: 10.1016/j.ecolmodel.2024.110983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.