Author
Listed:
- Duarte, Adam
- Spaan, Robert S.
- Peterson, James T.
- Pearl, Christopher A.
- Adams, Michael J.
Abstract
Managers often rely on predictions of species distributions and habitat suitability to inform conservation and management decisions. Although numerous approaches are available to develop models to make these predictions, few approaches exist to update existing models as new data accumulate. There is a need for updatable models to ensure good modeling practices in an aim to keep pace with change in the environment and change in data availability to continue to use the best-available science to inform decisions. We demonstrated a workflow to deliver predictive models to user groups within Bayesian networks, allowing models to be used to make predictions across new sites and to be easily updated with new data. To demonstrate this workflow, we focus on species distribution and habitat suitability models given their importance to informing conservation strategies across the globe. In particular, we followed a standard process of collating species encounter data available in online databases and ancillary covariate data to develop a habitat suitability model. We then used this model to parameterize a Bayesian network and updated the model with new data to predict species presence in a new focal ecoregion. We found the network updated relatively quickly as new data were incorporated, and the overall error rate generally decreased with each model update. Our approach allows for the formal incorporation of new data into predictions to help ensure model predictions are based on all relevant data available, regardless of whether they were collected after initial model development. Although our focus is on species distribution and habitat suitability models to inform conservation efforts, the workflow we describe herein can easily be applied to any use case where model uncertainty reduction and increased model prediction accuracy are desired via model updating as new data become available. Thus, our paper describes a generalizable workflow to implement model updating, which is widely recognized as a good modeling practice but is also underutilized in applied ecology.
Suggested Citation
Duarte, Adam & Spaan, Robert S. & Peterson, James T. & Pearl, Christopher A. & Adams, Michael J., 2025.
"Bayesian networks facilitate updating of species distribution and habitat suitability models,"
Ecological Modelling, Elsevier, vol. 501(C).
Handle:
RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003703
DOI: 10.1016/j.ecolmodel.2024.110982
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:501:y:2025:i:c:s0304380024003703. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.