IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002928.html
   My bibliography  Save this article

Identifying optimal cloud cover for enhanced forest carbon uptake: Periodic-case NEE-overshoot modelling

Author

Listed:
  • Kivalov, Sergey N

Abstract

On certain kinds of cloudy days, many forested ecosystems exhibit enhanced carbon uptake and water-use efficiency-the cloudy-day forest flux anomaly. Using ensemble methods to analyze eddy-covariance fluxes, we have diagnosed net ecosystem exchange (NEE) and water-use efficiency (WUE) of a temperate broadleaf forest and a tropical evergreen forest as they responded to natural fluctuating-light regimes. Here we apply average NEE and evapotranspiration solutions of a first-order dynamic model to describe the observed whole-canopy sensitivity to periodic light. On partly-cloudy days, maximum overall NEE enhancements over conventional steady-state equilibrium estimates are ≈ 25% for a midlatitude deciduous forest and ≈ 15% for a tropical evergreen forest. This finding supports our conclusion that in many cases the cloudy-day anomaly is a consequence of a dynamic response by the trees responding to fluctuating-light regimes occasioned by passing cumulus clouds.

Suggested Citation

  • Kivalov, Sergey N, 2024. "Identifying optimal cloud cover for enhanced forest carbon uptake: Periodic-case NEE-overshoot modelling," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002928
    DOI: 10.1016/j.ecolmodel.2024.110904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.