IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002758.html
   My bibliography  Save this article

Dispersal of optimal foragers in a patchy environment: Simulations with a mathematical model and tests of predictions in field experiments

Author

Listed:
  • Fauvergue, Xavier
  • Hopper, Keith R.

Abstract

To predict the effect of density on the dispersal of foraging parasitoids, we developed a spatially explicit individual-based model in which parasitoids move among host patches at random but use an optimal decision-rule about when to leave these patches. We used a simple decision rule where an individual forager exploits a patch as long as the instantaneous attack rate is higher than the average attack rate it has experienced in the environment. Such a rule implies that foragers compute and remember attack rates as they forage. Simulations with different combinations of patch distribution, host density, mutual interference, and parasitoid density predicted that dispersal distance should increase with parasitoid density. To test this prediction, we used data from two field experiments in which we released either few or many adults of the aphid parasitoid Aphelinus asychis in replicated sites, and subsequently assessed dispersal from the spatial distribution of parasitoid offspring. In the first experiment, we did not to detect a relation between the number released and dispersal distance, but in the second experiment, dispersal distance increased with initial density, as predicted by our model. We propose two hypotheses to explain the discrepancy between the experiments. Different levels of environmental variability among experiments, resulting from differences in experimental designs, could cause differences in statistical conclusions. However, there could be a threshold density below which dispersal is not density-dependent, and this threshold may have been exceeded in the second experiment where large releases involved many more individuals than in the first experiment. In any case, our approach linked individual behavior and spatial distribution, and our results show that the insect distributions in the field can be predicted, qualitatively, from theory about individual behavior.

Suggested Citation

  • Fauvergue, Xavier & Hopper, Keith R., 2024. "Dispersal of optimal foragers in a patchy environment: Simulations with a mathematical model and tests of predictions in field experiments," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002758
    DOI: 10.1016/j.ecolmodel.2024.110887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.