IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v487y2024ics0304380023002715.html
   My bibliography  Save this article

Ecological modeling evaluates the potential impacts of symbionts on plant pathogen vectoring in field populations

Author

Listed:
  • Mendiola, Sandra Y.
  • Gerardo, Nicole M.
  • Civitello, David J.

Abstract

Within the last decade, research into the use of insect microbial symbionts as a means of controlling populations of insect vectors and the pathogens they transmit has advanced substantially. Many microbes have been identified that affect important epidemiological traits of vectors or pathogens in the laboratory, yet few have been tested in the field. Consequently, it remains unknown which effects of symbionts drive successful control. We investigated the relative importance of simultaneous effects caused by one such microbe, Caballeronia spp., on the potential of its squash bug host to vector phytopathogenic Serratia marcescens. Infection with Caballeronia, a beneficial symbiont of squash bugs, leads to reduced pathogen titers and rapid clearance of S. marcescens in bugs, reducing the vectoring potential of a significant pest in squash agriculture. Using simulation modeling and sensitivity analysis, we determined the relative impact that reducing the vector potential of symbiont-free (aposymbiotic) bugs and increasing population-level symbiont coverage would have on overall pathogen transmission in a field setting. In this system, we show that aposymbiotic insects contribute significantly to pathogen outbreaks even when they comprise a small portion of the population. While reducing the transmission rate of aposymbiotic insects shows promise in disease mitigation, maximizing symbiont prevalence in the vector population is likely to have the most impact on mitigating plant infections. We conclude that for symbiont-mediated interventions where disparities in transmission between aposymbiotic and symbiotic individuals are already high, ensuring high symbiont uptake in a population is critical for success.

Suggested Citation

  • Mendiola, Sandra Y. & Gerardo, Nicole M. & Civitello, David J., 2024. "Ecological modeling evaluates the potential impacts of symbionts on plant pathogen vectoring in field populations," Ecological Modelling, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002715
    DOI: 10.1016/j.ecolmodel.2023.110541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002715
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turelli, Michael & Barton, Nicholas H., 2017. "Deploying dengue-suppressing Wolbachia : Robust models predict slow but effective spatial spread in Aedes aegypti," Theoretical Population Biology, Elsevier, vol. 115(C), pages 45-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jabili Angina & Anish Bachhu & Eesha Talati & Rishi Talati & Jan Rychtář & Dewey Taylor, 2022. "Game-Theoretical Model of the Voluntary Use of Insect Repellents to Prevent Zika Fever," Dynamic Games and Applications, Springer, vol. 12(1), pages 133-146, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.