IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022002204.html
   My bibliography  Save this article

Thermal reaction norm for sexualization: The missing link between temperature and sex ratio for temperature-dependent sex determination

Author

Listed:
  • Monsinjon, Jonathan R.
  • Guillon, Jean-Michel
  • Wyneken, Jeanette
  • Girondot, Marc

Abstract

Species with temperature-dependent sex determination (TSD) can experience biased sex ratios in natural conditions, which raises questions the vulnerability of populations in the face of climate change. Studies addressing the adaptive significance TSD have been hampered by the difficulty of accurately estimating sex ratios under natural incubation conditions. Here we introduce the thermal reaction norm for sexualization, a novel concept measuring the strength of masculinization or feminization of temperatures, to model the effect of temperature for sex determination in TSD species. We use hatchling sex ratio data and field incubation temperatures collected between 2002 and 2018 at a globally important loggerhead turtle (Caretta caretta) nesting rookery. The new parametrization makes possible the understanding of how temperature-sensitive sex determination works. We show that the temperature could influence the sexualization of the gonad earlier than what is currently recognized. Additionally, we explore the results of several easy to implement proxies that have been used in literature. Our approach greatly outperforms previous ones in sex ratio prediction. Our results should help further studies to refine population-wide primary sex ratio estimates of reptiles with TSD to adapt current conservation strategies and develop them in the future.

Suggested Citation

  • Monsinjon, Jonathan R. & Guillon, Jean-Michel & Wyneken, Jeanette & Girondot, Marc, 2022. "Thermal reaction norm for sexualization: The missing link between temperature and sex ratio for temperature-dependent sex determination," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002204
    DOI: 10.1016/j.ecolmodel.2022.110119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuentes, Mariana M.P.B. & Monsinjon, Jonathan & Lopez, Milagros & Lara, Paulo & Santos, Alexsandro & dei Marcovaldi, Maria A.G. & Girondot, Marc, 2017. "Sex ratio estimates for species with temperature-dependent sex determination differ according to the proxy used," Ecological Modelling, Elsevier, vol. 365(C), pages 55-67.
    2. Philip Heidelberger & Peter D. Welch, 1983. "Simulation Run Length Control in the Presence of an Initial Transient," Operations Research, INFORMS, vol. 31(6), pages 1109-1144, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catron, Spencer & Roth, Sarah & Zumpano, Francesca & Bintz, Jason & Fordyce, James A. & Lenhart, Suzanne & Miller, Debra L. & Wyneken, Jeanette, 2023. "Modeling the impacts of temperature during nesting seasons on Loggerhead (Caretta caretta) Sea Turtle populations in South Florida," Ecological Modelling, Elsevier, vol. 481(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hancock, Joana & Vieira, Sara & Lima, Hipólito & Schmitt, Vanessa & Pereira, Jaconias & Rebelo, Rui & Girondot, Marc, 2019. "Overcoming field monitoring restraints in estimating marine turtle internesting period by modelling individual nesting behaviour using capture-mark-recapture data," Ecological Modelling, Elsevier, vol. 402(C), pages 76-84.
    2. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    3. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    4. Enver Yücesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    5. Riccardo (Jack) Lucchetti & Luca Pedini, 2020. "ParMA: Parallelised Bayesian Model Averaging for Generalised Linear Models," Working Papers 2020:28, Department of Economics, University of Venice "Ca' Foscari".
    6. Burda Martin & Bélisle Louis, 2019. "Copula multivariate GARCH model with constrained Hamiltonian Monte Carlo," Dependence Modeling, De Gruyter, vol. 7(1), pages 133-149, January.
    7. Yu, Jun, 2012. "A semiparametric stochastic volatility model," Journal of Econometrics, Elsevier, vol. 167(2), pages 473-482.
    8. Goldman Elena & Tsurumi Hiroki, 2005. "Bayesian Analysis of a Doubly Truncated ARMA-GARCH Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(2), pages 1-38, June.
    9. Andr'es Ram'irez-Hassan & Alejandro L'opez-Vera, 2021. "Semi-parametric estimation of the EASI model: Welfare implications of taxes identifying clusters due to unobserved preference heterogeneity," Papers 2109.07646, arXiv.org.
    10. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
    11. Michael Edwards, 2010. "A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis," Psychometrika, Springer;The Psychometric Society, vol. 75(3), pages 474-497, September.
    12. Hanneke Geerlings & Cees Glas & Wim Linden, 2011. "Modeling Rule-Based Item Generation," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 337-359, April.
    13. Peter Stüttgen & Peter Boatwright & Robert T. Monroe, 2012. "A Satisficing Choice Model," Marketing Science, INFORMS, vol. 31(6), pages 878-899, November.
    14. Sicsic, Jonathan & Krucien, Nicolas & Franc, Carine, 2016. "What are GPs' preferences for financial and non-financial incentives in cancer screening? Evidence for breast, cervical, and colorectal cancers," Social Science & Medicine, Elsevier, vol. 167(C), pages 116-127.
    15. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    16. Ralf van der Lans & Bram Van den Bergh & Evelien Dieleman, 2014. "Partner Selection in Brand Alliances: An Empirical Investigation of the Drivers of Brand Fit," Marketing Science, INFORMS, vol. 33(4), pages 551-566, July.
    17. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    18. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    19. Rotondi, R., 2002. "On the influence of the proposal distributions on a reversible jump MCMC algorithm applied to the detection of multiple change-points," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 633-653, September.
    20. Terence D.Agbeyegbe & Elena Goldman, 2005. "Estimation of threshold time series models using efficient jump MCMC," Economics Working Paper Archive at Hunter College 406, Hunter College Department of Economics, revised 2005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.