IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022002198.html
   My bibliography  Save this article

Keeping up with the math: Advancing the ecological foundation of the Great Lakes Cladophora Model

Author

Listed:
  • Kuczynski, Anika
  • Auer, Martin T.
  • Taylor, William D.
  • Chapra, Steven C.
  • Dijkstra, Marcel

Abstract

The nearshore waters of the Laurentian Great Lakes have historically suffered from beach fouling and clogged water intakes due to proliferation of the native, filamentous green alga Cladophora. A resurgence in nuisance growth of the alga has led to a demand for an improved model platform to better guide management. The Great Lakes Cladophora model (GLCM v3) predicts algal biomass (g dry matter m−2) and stored phosphorus content (P as % of dry matter) based on simulations forced by time series of incident light (I), water temperature (T) and water column soluble reactive phosphorus concentration (SRP, μgP L-1). A particular strength of the GLCM v3 is its foundation in ecologically sound biokinetic mechanisms, supported by field and laboratory measurements. These measurements, advancing the credibility and reliability of the biokinetic framework, include improved characterization of the growth and respiration responses to light and temperature, addition of a self-shading algorithm replacing an overly deterministic carrying capacity term, a new treatment of phosphorus uptake based on radioisotope experiments, additional observational support for Droop-based simulation of growth as a function of stored P, and implementation of a new physiologically and physically driven sloughing function. Uncertainty associated with processes collectively termed “environmental friction” (the I, T, and P growth forcing functions) is reduced, leaving the model sensitive to the maximum specific growth rate and the coefficient for extinction of photosynthetically active radiation through the algal mat. The model was performance tested by multi-lake (Erie, Huron, Ontario, and Michigan) calibration employing a common set of biophysical coefficients. This common set of calibration coefficients provides enhanced corroboration that GLCM v3 is suitable for examining the phosphorus–Cladophora dynamic across the Great Lakes. In particular, it greatly strengthens the model's efficacy for establishing a phosphorus standard to maintain levels of algal biomass below those constituting a nuisance condition, as per the Great Lakes Water Quality Agreement of 2012. In addition, the model structure can be applied to other lakes experiencing problems with attached filamentous algae.

Suggested Citation

  • Kuczynski, Anika & Auer, Martin T. & Taylor, William D. & Chapra, Steven C. & Dijkstra, Marcel, 2022. "Keeping up with the math: Advancing the ecological foundation of the Great Lakes Cladophora Model," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002198
    DOI: 10.1016/j.ecolmodel.2022.110118
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuczynski, Anika & Bakshi, Ankita & Auer, Martin T. & Chapra, Steven C., 2020. "The canopy effect in filamentous algae: Improved modeling of Cladophora growth via a mechanistic representation of self-shading," Ecological Modelling, Elsevier, vol. 418(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002198. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.