IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v472y2022ics030438002200206x.html
   My bibliography  Save this article

Ecological impact of polycyclic aromatic hydrocarbons on Baiyangdian Lake based on an ecosystem model

Author

Listed:
  • Zeng, Yong
  • Yang, Wei
  • Zhao, Yanwei

Abstract

Conventional approaches to assessing the ecological impact of chemicals face uncertainty when extrapolating from single-species toxicity data to community-level effects on real ecosystems. Ecological models may be a useful tool to reduce that uncertainty because they enable a more mechanistic understanding of the effects of chemicals on species assemblages at the ecosystem level. Here, a case study was developed in AQUATOX 3.1 to simulate the effects of the polycyclic aromatic hydrocarbons (PAHs) on Baiyangdian (BYD) Lake in northern China. The model consisted of 12 groups of species: two phytoplankton, one macrophyte, three zooplankton, four benthic macroinvertebrates, one omnivorous fish, and one piscivorous fish. A simulation of a perturbed (or baseline) scenario over 1 year showed satisfactory calibration on annual average biomasses. Compared with a control scenario, the overall average biomass relative variation (V) decreases by 4.02%, the relative variation of eco-exergy (VEx) decreases by 5.64%, and the ratio of gross primary productivity to community respiration (P/R) increases by 5.58%. These results indicate that one-third of the species are remarkably affected, of which the biomass differences are larger than 20%. However, indirect effects due to ecological interactions simulated by the BYD model can either amplify or mitigate the effect of direct toxicity, leading to significant changes for some organisms’ responses to chemicals in real ecosystems. The case study demonstrates that the BYD model has the potential to be an effective and useful tool to evaluate the toxicity effects of organic pollutants at an ecosystem level. Some suggestions are put forward to improve the model's accuracy, including (1) more monitoring and testing data for biological and toxicological parameters, (2) a step-by-step strategy for model calibration, and (3) sensitivity analysis before calibrating the parameters.

Suggested Citation

  • Zeng, Yong & Yang, Wei & Zhao, Yanwei, 2022. "Ecological impact of polycyclic aromatic hydrocarbons on Baiyangdian Lake based on an ecosystem model," Ecological Modelling, Elsevier, vol. 472(C).
  • Handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s030438002200206x
    DOI: 10.1016/j.ecolmodel.2022.110103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200206X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niu, Zhiguang & Gou, Qianqian & Wang, Xiujun & Zhang, Ying, 2016. "Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis," Ecological Modelling, Elsevier, vol. 335(C), pages 54-63.
    2. Zhang, Lulu & Cui, Jiansheng & Song, Tiance & Liu, Yong, 2018. "Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of Polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China," Ecological Modelling, Elsevier, vol. 388(C), pages 31-44.
    3. Zhang, Lulu & Liu, Jingling & Li, Yi & Zhao, Yanwei, 2013. "Applying AQUATOX in determining the ecological risk assessment of polychlorinated biphenyl contamination in Baiyangdian Lake, North China," Ecological Modelling, Elsevier, vol. 265(C), pages 239-249.
    4. Grechi, Laura & Franco, Antonio & Palmeri, Luca & Pivato, Alberto & Barausse, Alberto, 2016. "An ecosystem model of the lower Po river for use in ecological risk assessment of xenobiotics," Ecological Modelling, Elsevier, vol. 332(C), pages 42-58.
    5. Clough, Jonathan S. & Blancher, Eldon C. & Park, Richard A. & Milroy, Scott P. & Graham, W. Monty & Rakocinski, Chet F. & Hendon, J. Read & Wiggert, Jerry D. & Leaf, Robert, 2017. "Establishing nearshore marine injuries for the Deepwater Horizon natural resource damage assessment using AQUATOX," Ecological Modelling, Elsevier, vol. 359(C), pages 258-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jinxia & Liu, Jingling & You, Xiaoguang & Shi, Xuan & Zhang, Lulu, 2018. "Simulating the gross primary production and ecosystem respiration of estuarine ecosystem in North China with AQUATOX," Ecological Modelling, Elsevier, vol. 373(C), pages 1-12.
    2. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    3. Bai, Jing & Zhao, Jian & Zhang, Zhenyu & Tian, Ziqiang, 2022. "Assessment and a review of research on surface water quality modeling," Ecological Modelling, Elsevier, vol. 466(C).
    4. Zhang, Lulu & Cui, Jiansheng & Song, Tiance & Liu, Yong, 2018. "Application of an AQUATOX model for direct toxic effects and indirect ecological effects assessment of Polycyclic aromatic hydrocarbons (PAHs) in a plateau eutrophication lake, China," Ecological Modelling, Elsevier, vol. 388(C), pages 31-44.
    5. Doyeong Ku & Yeon-Ji Chae & Yerim Choi & Chang Woo Ji & Young-Seuk Park & Ihn-Sil Kwak & Yong-Jae Kim & Kwang-Hyeon Chang & Hye-Ji Oh, 2022. "Optimal Method for Biomass Estimation in a Cladoceran Species, Daphnia Magna (Straus, 1820): Evaluating Length–Weight Regression Equations and Deriving Estimation Equations Using Body Length, Width an," Sustainability, MDPI, vol. 14(15), pages 1-10, July.
    6. Niu, Zhiguang & Gou, Qianqian & Wang, Xiujun & Zhang, Ying, 2016. "Simulation of a water ecosystem in a landscape lake in Tianjin with AQUATOX: Sensitivity, calibration, validation and ecosystem prognosis," Ecological Modelling, Elsevier, vol. 335(C), pages 54-63.
    7. Hanane Rhomad & Karima Khalil & Khalid Elkalay, 2023. "Water Quality Modeling in Atlantic Region: Review, Science Mapping and Future Research Directions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 451-499, January.
    8. Kocmoud, Amanda R. & Wang, Hsiao-Hsuan & Grant, William E. & Gallaway, Benny J., 2019. "Population dynamics of the endangered Kemp’s ridley sea turtle following the 2010 oil spill in the Gulf of Mexico: Simulation of potential cause-effect relationships," Ecological Modelling, Elsevier, vol. 392(C), pages 159-178.
    9. Hajiahmadi, Delnia & Amanollahi, Jamil, 2018. "Fuzzy risk assessment modelling of wild animal life in Bijar protected area," Ecological Modelling, Elsevier, vol. 387(C), pages 49-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s030438002200206x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.