Author
Listed:
- Yang, Songxi
- Yang, Jian
- Shi, Shuo
- Song, Shalei
- Zhang, Yangyang
- Luo, Yi
- Du, Lin
Abstract
Solar-induced chlorophyll fluorescence (SIF) has been regarded as proxy data of vegetation photosynthesis; thus, it is assimilated into the terrestrial carbon cycle modeling. The Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) model is one of the most utilized models of SIF simulation. However, the currently incomplete understanding of SCOPE SIF factors and the lack of exploring how SCOPE works under different vegetation types would deteriorate further carbon cycle research. Herein, this study disentangled decisive SIF factors in the SCOPE model; then, a sample SIF dataset (SynSIF), with spatial resolutions of both 0.02∘ and 0.05∘, was simulated through SCOPE model using factors above. Then this study validated how far SCOPE simulating SIF could capture GPP, compared with other SIF datasets. The results showed that: (1) There are five decisive SIF factors in SCOPE model, including plant status (leaf chlorophyll content and leaf area index) and meteorological parameters (incoming shortwave radiation, air temperature, and atmospheric vapor pressure). (2) The linear relationship of SynSIF-GPP outachieved other SIF datasets across all six vegetation types in southern South America, Asia, and Africa, improving R2 averagely by 0.33, 0.28, and 0.15, respectively. (3) SynSIF in Oceania and Europe, revealing GPP better in shrublands (with SynSIF-GPP R2 increasing by 0.15 and 0.16, respectively) and grasslands (with SynSIF-GPP coefficients increasing by 0.14 and 0.06, respectively), illustrated spatially complementary characteristics with GOSIF across varying vegetation types. Thus, we anticipate that this study could provide more complete information for SCOPE simulating SIF in different biome research when estimating the terrestrial carbon cycle.
Suggested Citation
Yang, Songxi & Yang, Jian & Shi, Shuo & Song, Shalei & Zhang, Yangyang & Luo, Yi & Du, Lin, 2022.
"An exploration of solar-induced chlorophyll fluorescence (SIF) factors simulated by SCOPE for capturing GPP across vegetation types,"
Ecological Modelling, Elsevier, vol. 472(C).
Handle:
RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001843
DOI: 10.1016/j.ecolmodel.2022.110079
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s0304380022001843. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.