IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v468y2022ics0304380022000680.html
   My bibliography  Save this article

An empirical dynamic modeling framework for missing or irregular samples

Author

Listed:
  • Johnson, Bethany
  • Munch, Stephan B.

Abstract

Empirical dynamic modeling (EDM) is a powerful method for forecasting and analyzing nonlinear dynamics. However, typical applications of EDM assume that samples are evenly spaced over time. This presents problems in ecology, in which data are often missing or sampled irregularly. Standard methods for handling irregularity in EDM suffer under conditions that are common in ecology, such as short time series and large dynamic fluctuations, so there is a need to adapt the framework to cope with these challenges more effectively. Here we consider a variable step-size extension of EDM, which incorporates the temporal spacing between samples into EDM delay-coordinate vectors and circumvents the challenges faced by other approaches. We evaluated the forecast accuracy of the variable step-size method along with that of two other methods: (1) exclusion of delay-coordinate vectors with missing data and (2) linear interpolation along with ordinary EDM. We tested these methods using simulated data from three chaotic ecological models with various amounts and patterns of missing data. We also evaluated them using two empirical datasets: laboratory rotifer dynamics and aphid dynamics from the field. Results showed that while exclusion and linear interpolation can produce accurate forecasts in some scenarios, the variable step-size method consistently gives accurate forecasts in a wide range of scenarios. Our analysis demonstrates that variable step-size EDM is an effective method for coping with missing or irregular samples and expands the number of datasets to which EDM can be applied. Furthermore, EDM can be extended to estimate Lyapunov exponents from irregularly sampled time series and approximate continuous dynamics from discrete-time data.

Suggested Citation

  • Johnson, Bethany & Munch, Stephan B., 2022. "An empirical dynamic modeling framework for missing or irregular samples," Ecological Modelling, Elsevier, vol. 468(C).
  • Handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000680
    DOI: 10.1016/j.ecolmodel.2022.109948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022000680
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.109948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiao Liu & Param Vir Singh & Kannan Srinivasan, 2016. "A Structured Analysis of Unstructured Big Data by Leveraging Cloud Computing," Marketing Science, INFORMS, vol. 35(3), pages 363-388, May.
    2. Brias, Antoine & Munch, Stephan B., 2021. "Ecosystem based multi-species management using Empirical Dynamic Programming," Ecological Modelling, Elsevier, vol. 441(C).
    3. Elamurugu Alias Gokul & Dionysios E Raitsos & John A Gittings & Abdulsalam Alkawri & Ibrahim Hoteit, 2019. "Remotely sensing harmful algal blooms in the Red Sea," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-21, April.
    4. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    5. Masayuki Ushio & Chih-hao Hsieh & Reiji Masuda & Ethan R Deyle & Hao Ye & Chun-Wei Chang & George Sugihara & Michio Kondoh, 2018. "Fluctuating interaction network and time-varying stability of a natural fish community," Nature, Nature, vol. 554(7692), pages 360-363, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    2. Christos Floros & Konstantinos Gkillas & Christoforos Konstantatos & Athanasios Tsagkanos, 2020. "Realized Measures to Explain Volatility Changes over Time," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    3. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    4. Ernst Konrad, 2009. "The impact of monetary policy surprises on asset return volatility: the case of Germany," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 23(2), pages 111-135, June.
    5. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    6. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    7. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    9. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    10. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    11. Novkovska, Blagica & Serafimovic, Gordana, 2018. "Recognizing The Vulnerability Of Generation Z To Economic And Social Risks," UTMS Journal of Economics, University of Tourism and Management, Skopje, Macedonia, vol. 9(1), pages 29-37.
    12. CHIA-LIN CHANG & MICHAEL McALEER & ROENGCHAI TANSUCHAT, 2012. "Modelling Long Memory Volatility In Agricultural Commodity Futures Returns," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-27.
    13. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.
    14. Wei Liu & Bruce Morley, 2009. "Volatility Forecasting in the Hang Seng Index using the GARCH Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 51-63, March.
    15. Orkun ÇELİK & Deniz ERER & Elif ERER, 2018. "2008 Küresel Krizinin Bireysel Emeklilik Fonları Oynaklığı Üzerindeki Etkisi: Türkiye Örneği," Sosyoekonomi Journal, Sosyoekonomi Society, issue 26(35).
    16. Wilms, Ines & Rombouts, Jeroen & Croux, Christophe, 2021. "Multivariate volatility forecasts for stock market indices," International Journal of Forecasting, Elsevier, vol. 37(2), pages 484-499.
    17. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    18. Selçuk, Faruk & Gençay, Ramazan, 2006. "Intraday dynamics of stock market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 375-387.
    19. Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
    20. Gavriilidis, Konstantinos & Kambouroudis, Dimos S. & Tsakou, Katerina & Tsouknidis, Dimitris A., 2018. "Volatility forecasting across tanker freight rates: The role of oil price shocks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 376-391.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:468:y:2022:i:c:s0304380022000680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.