IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v465y2022ics0304380021003963.html
   My bibliography  Save this article

General Landscape Connectivity Model (GLCM): a new way to map whole of landscape biodiversity functional connectivity for operational planning and reporting

Author

Listed:
  • Drielsma, Michael J.
  • Love, Jamie
  • Taylor, Subhashni
  • Thapa, Rajesh
  • Williams, Kristen J.

Abstract

Graph-theoretic approaches are commonly used to map landscape connectivity networks to inform environmental management priorities. We developed the new General Landscape Connectivity Model (GLCM), as a operationally practical way of evaluating and mapping habitat networks to inform conservation priorities and plans. GLCM is built on two complementary metapopulation ecology-based measures: Neighbourhood habitat area (Ni) and habitat link value (Li). Ni is a measure of the amount of connected habitat to each location considering its cross-scale connectivity to neighbouring habitat. The remaining Ni across a region can be reported as an indicator of Ecological Carrying Capacity for wildlife (plants and animals). Li at any location is its contribution to the landscape connectivity of the study region (i.e. which is reported as summed Ni across a region) by virtue of providing the ‘least-cost’ linkages between concentrations of habitat. Mapped Li provides valuable insights into the pattern of a region's habitat network, highlighting functioning habitat corridors and stepping-stones, and candidate areas for conservation and restoration. Due to its foundations in ecological theory and its parsimonious design, GLCM addresses a number of criteria we list as important, while addressing criticisms often levelled at graph-theoretical approaches. We present results for three south-east Australian case-studies using continuous-value ecological condition surfaces as input. However, a simple habitat/non-habitat binary surface approximating a threshold ecological condition can also be used. GLCM has been designed to specifically address the need for generic landscape connectivity assessment at regional scales, and broader. It incorporates connectivity analyses across a range of spatial scales and granularities relevant to broad ranges of taxa and movement processes (foraging, dispersal and migration). Successively finer spatial scales are more intensively sampled based on a simple scaling-law. This approach allows analysis resolutions to be determined by data-driven ecological relevance rather than by processing limitations. The operational advantages of GLCM means that landscape connectivity assessments can be readily updated with refined or changed inputs including time-series remote sensing of land cover, or applied to alternative scenarios of land use, ecological restoration, climate projections or combinations of these.

Suggested Citation

  • Drielsma, Michael J. & Love, Jamie & Taylor, Subhashni & Thapa, Rajesh & Williams, Kristen J., 2022. "General Landscape Connectivity Model (GLCM): a new way to map whole of landscape biodiversity functional connectivity for operational planning and reporting," Ecological Modelling, Elsevier, vol. 465(C).
  • Handle: RePEc:eee:ecomod:v:465:y:2022:i:c:s0304380021003963
    DOI: 10.1016/j.ecolmodel.2021.109858
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021003963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Drielsma, Michael & Ferrier, Simon & Manion, Glenn, 2007. "A raster-based technique for analysing habitat configuration: The cost–benefit approach," Ecological Modelling, Elsevier, vol. 202(3), pages 324-332.
    2. Katherine A. Zeller & Rebecca Lewison & Robert J. Fletcher & Mirela G. Tulbure & Megan K. Jennings, 2020. "Understanding the Importance of Dynamic Landscape Connectivity," Land, MDPI, vol. 9(9), pages 1-15, August.
    3. Stephen R. Carpenter & Kenneth J. Arrow & Scott Barrett & Reinette Biggs & William A. Brock & Anne-Sophie Crépin & Gustav Engström & Carl Folke & Terry P. Hughes & Nils Kautsky & Chuan-Zhong Li & Geof, 2012. "General Resilience to Cope with Extreme Events," Sustainability, MDPI, vol. 4(12), pages 1-12, November.
    4. Meppem, Tony & Gill, Roderic, 1998. "Planning for sustainability as a learning concept," Ecological Economics, Elsevier, vol. 26(2), pages 121-137, August.
    5. Williams, Kristen J. & Reeson, Andrew F. & Drielsma, Michael J. & Love, Jamie, 2012. "Optimised whole-landscape ecological metrics for effective delivery of connectivity-focused conservation incentive payments," Ecological Economics, Elsevier, vol. 81(C), pages 48-59.
    6. Drielsma, Michael & Love, Jamie, 2021. "An equitable method for evaluating habitat amount and potential occupancy," Ecological Modelling, Elsevier, vol. 440(C).
    7. Cushman, Samuel A. & Landguth, Erin L., 2012. "Multi-taxa population connectivity in the Northern Rocky Mountains," Ecological Modelling, Elsevier, vol. 231(C), pages 101-112.
    8. Drielsma, Michael & Ferrier, Simon & Howling, Gary & Manion, Glenn & Taylor, Subhashni & Love, Jamie, 2014. "The Biodiversity Forecasting Toolkit: Answering the ‘how much’, ‘what’, and ‘where’ of planning for biodiversity persistence," Ecological Modelling, Elsevier, vol. 274(C), pages 80-91.
    9. C. R. Margules & R. L. Pressey, 2000. "Systematic conservation planning," Nature, Nature, vol. 405(6783), pages 243-253, May.
    10. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    11. Drielsma, Michael & Manion, Glenn & Ferrier, Simon, 2007. "The spatial links tool: Automated mapping of habitat linkages in variegated landscapes," Ecological Modelling, Elsevier, vol. 200(3), pages 403-411.
    12. Robert C. Godfree & Nunzio Knerr & Francisco Encinas-Viso & David Albrecht & David Bush & D. Christine Cargill & Mark Clements & Cécile Gueidan & Lydia K. Guja & Tom Harwood & Leo Joseph & Brendan Lep, 2021. "Implications of the 2019–2020 megafires for the biogeography and conservation of Australian vegetation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roman Plokhikh & Dana Shokparova & Gyula Fodor & Sándor Berghauer & Attila Tóth & Uzakbay Suymukhanov & Aiman Zhakupova & Imre Varga & Kai Zhu & Lóránt Dénes Dávid, 2023. "Towards Sustainable Pasture Agrolandscapes: A Landscape-Ecological-Indicative Approach to Environmental Audits and Impact Assessments," Sustainability, MDPI, vol. 15(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drielsma, Michael & Ferrier, Simon & Howling, Gary & Manion, Glenn & Taylor, Subhashni & Love, Jamie, 2014. "The Biodiversity Forecasting Toolkit: Answering the ‘how much’, ‘what’, and ‘where’ of planning for biodiversity persistence," Ecological Modelling, Elsevier, vol. 274(C), pages 80-91.
    2. Drielsma, Michael J. & Love, Jamie & Williams, Kristen J. & Manion, Glenn & Saremi, Hanieh & Harwood, Tom & Robb, Janeen, 2017. "Bridging the gap between climate science and regional-scale biodiversity conservation in south-eastern Australia," Ecological Modelling, Elsevier, vol. 360(C), pages 343-362.
    3. Conceição, Eliezer O. & Garcia, Jéssica Magon & Alves, Gustavo Henrique Zaia & Delanira-Santos, Driele & Corbetta, Daiany de Fátima & Betiol, Tânia Camila Crivelari & Pacifico, Ricardo & Romagnolo, Ma, 2022. "The impact of downsizing protected areas: How a misguided policy may enhance landscape fragmentation and biodiversity loss," Land Use Policy, Elsevier, vol. 112(C).
    4. Douglas J Bruggeman, 2015. "The Value of Learning about Natural History in Biodiversity Markets," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    5. Justin Dijk & Erik Ansink & Daan van Soest, 2017. "Buyouts and Agglomeration Bonuses in Wildlife Corridor Auctions," Tinbergen Institute Discussion Papers 17-036/VIII, Tinbergen Institute.
    6. Williams, Kristen J. & Reeson, Andrew F. & Drielsma, Michael J. & Love, Jamie, 2012. "Optimised whole-landscape ecological metrics for effective delivery of connectivity-focused conservation incentive payments," Ecological Economics, Elsevier, vol. 81(C), pages 48-59.
    7. Zhaoyang Liu & Jintao Xu & Xiaojun Yang & Qin Tu & Nick Hanley & Andreas Kontoleon, 2019. "Performance of Agglomeration Bonuses in Conservation Auctions: Lessons from a Framed Field Experiment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(3), pages 843-869, July.
    8. Kangas, Johanna & Ollikainen, Markku, 2022. "A PES scheme promoting forest biodiversity and carbon sequestration," Forest Policy and Economics, Elsevier, vol. 136(C).
    9. Frans P. Vries & Nick Hanley, 2016. "Incentive-Based Policy Design for Pollution Control and Biodiversity Conservation: A Review," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 63(4), pages 687-702, April.
    10. Heather McMillen & Lindsay K. Campbell & Erika S. Svendsen & Renae Reynolds, 2016. "Recognizing Stewardship Practices as Indicators of Social Resilience: In Living Memorials and in a Community Garden," Sustainability, MDPI, vol. 8(8), pages 1-26, August.
    11. Tamara S. Wilson & Benjamin M. Sleeter & Rachel R. Sleeter & Christopher E. Soulard, 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach," Land, MDPI, vol. 3(2), pages 1-28, April.
    12. Auriel M. V. Fournier & R. Randy Wilson & Jeffrey S. Gleason & Evan M. Adams & Janell M. Brush & Robert J. Cooper & Stephen J. DeMaso & Melanie J. L. Driscoll & Peter C. Frederick & Patrick G. R. Jodi, 2023. "Structured Decision Making to Prioritize Regional Bird Monitoring Needs," Interfaces, INFORMS, vol. 53(3), pages 207-217, May.
    13. Wang, Haoluan, 2017. "Land Conservation for Open Space: The Impact of Neighbors and the Natural Environment," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258125, Agricultural and Applied Economics Association.
    14. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    15. Shirley Saenz & Tomas Walschburger & Juan Carlos González & Jorge León & Bruce McKenney & Joseph Kiesecker, 2013. "A Framework for Implementing and Valuing Biodiversity Offsets in Colombia: A Landscape Scale Perspective," Sustainability, MDPI, vol. 5(12), pages 1-27, November.
    16. Dragicevic, Arnaud Z. & Shogren, Jason F., 2021. "Preservation Value in Socio-Ecological Systems," Ecological Modelling, Elsevier, vol. 443(C).
    17. Iritie, Jean-Jacques, 2015. "Economic Growth, Biodiversity and Conservation Policies in Africa: an Overview," MPRA Paper 62005, University Library of Munich, Germany.
    18. Ming Tang & Huchang Liao & Zhengjun Wan & Enrique Herrera-Viedma & Marc A. Rosen, 2018. "Ten Years of Sustainability (2009 to 2018): A Bibliometric Overview," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    19. Zhouqiao Ren & Wanxin Zhan & Qiaobing Yue & Jianhua He, 2020. "Prioritizing Agricultural Patches for Reforestation to Improve Connectivity of Habitat Conservation Areas: A Guide to Grain-to-Green Project," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    20. Sari, Dwi Amalia & Margules, Chris & Lim, Han She & Widyatmaka, Febrio & Sayer, Jeffrey & Dale, Allan & Macgregor, Colin, 2021. "Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia," Land Use Policy, Elsevier, vol. 105(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:465:y:2022:i:c:s0304380021003963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.