IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v440y2021ics0304380020304774.html
   My bibliography  Save this article

Utilizing machine learning for detecting flowering in mid-range digital repeat photography

Author

Listed:
  • Kim, Tae Kyung
  • Kim, Sukyung
  • Won, Myoungsoo
  • Lim, Jong-Hwan
  • Yoon, Sukhee
  • Jang, Keunchang
  • Lee, Kye-Han
  • Park, Yeong Dae
  • Kim, Hyun Seok

Abstract

The responses of plants to climate change are typically reflected in the changes in leaf and flowering phenology. By exploiting the strength and simplicity of repeated digital photography and color indices, a majority of the phenological studies have been successful at investigating leaf phenology, while flowering phenology is rarely studied using the automatic capture and analysis of repeated photography. In this study, we trained and tested 5 different pretrained Convolutional Neural Network (CNN) algorithms to detect flowering events from images of white colored flowering trees and analyzed the possible factors that can affect the performance of the models. We collected images from the web and processed the images into a binary classification dataset in which a positive label indicated a tree in bloom. We also installed time-lapse cameras and captured images to validate the performances of the models in the real-world. Regarding the CNN architectures, the VGG16, ResNet50, ResNet101, MobileNet, and NASNet models were adopted, and the model weights were pretrained using the ImageNet-1000 dataset. After 20 epochs of training with 16,005 images, all of the models were successfully trained, reaching over 98% test accuracy, and 4 models reached over 99% test accuracy. All the models also showed accurate and stable performances in detecting flowering in time-series datasets with a minor inconstancy at the beginning of the flowering stages. Overall, the NASNet model showed the best performance in both the test dataset and the time-series datasets. A detailed analysis of the performance revealed that the models were especially prone to misclassify images with small relative flowering areas and were affected by the number of samples in the training dataset. We concluded that the preprocessing of the images and the size of the training dataset are essential for the high performance of the models compared to the architecture of the individual models. Furthermore, in addition to the need for a larger dataset, the proper resolution is required to successfully detect flowering from repeated photography, and most current phenological networks do not meet this condition. We suggest that mid-range photography combined with CNN algorithms can be a legitimate approach to properly accumulate and automatically process the data for studying flowering phenology.

Suggested Citation

  • Kim, Tae Kyung & Kim, Sukyung & Won, Myoungsoo & Lim, Jong-Hwan & Yoon, Sukhee & Jang, Keunchang & Lee, Kye-Han & Park, Yeong Dae & Kim, Hyun Seok, 2021. "Utilizing machine learning for detecting flowering in mid-range digital repeat photography," Ecological Modelling, Elsevier, vol. 440(C).
  • Handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304774
    DOI: 10.1016/j.ecolmodel.2020.109419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020304774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abramovich, Felix & Pensky, Marianna, 2019. "Classification with many classes: Challenges and pluses," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Marco Archetti & Andrew D Richardson & John O'Keefe & Nicolas Delpierre, 2013. "Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael O. Olusola & Sydney I. Onyeagu, 2020. "On the binary classification problem in discriminant analysis using linear programming methods," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(1), pages 119-130.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:440:y:2021:i:c:s0304380020304774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.