IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v432y2020ics0304380020302738.html
   My bibliography  Save this article

A marine carbon monoxide (CO) model with a new parameterization of microbial oxidation

Author

Listed:
  • Kwon, Young Shin
  • Kang, Hyoun-Woo
  • Polimene, Luca
  • Rhee, Tae Siek

Abstract

Traditionally, marine carbon monoxide (CO) models assume that the microbial oxidation of CO is only dependent on the concentration of CO in the water column. However, CO oxidation rates in the ocean have been reported to vary up to two orders of magnitude both spatially and temporally. Here, we developed a new model assuming that CO microbial oxidation is dependent on bacterial carbon biomass other than CO concentration. In addition to microbial oxidation, the model also describes CO photochemical production, vertical mixing, and air-sea gas exchange. The new CO model has been embedded in the European Regional Seas Ecosystem Model (ERSEM) and coupled with the General Ocean Turbulence Model (GOTM). The CO-GOTM-ERSEM model was implemented at the Bermuda Atlantic Time Series (BATS) station to simulate CO concentrations observed in March 1993 by Kettle (1994). The proposed second-order function describing CO microbial oxidation introduces a new parameter, the bacteria biomass specific oxidation rate, which was estimated to be 5.7 ± 0.2 (μg C m−3)−1 h−1. Statistical metrics indicates that the new CO model performs better than a previously published model with a first-order decay function to describe microbial oxidation, acknowledging the dependence of microbial oxidation on bacterial abundance is realistic. A long-term (1992 - 1994) simulation carried out with CO-GOTM-ERSEM reproduced the spatial and seasonal variability of CO reported in the literature. Our model provides a realistic description of the CO dynamics and is potentially usable in different environmental contexts worldwide.

Suggested Citation

  • Kwon, Young Shin & Kang, Hyoun-Woo & Polimene, Luca & Rhee, Tae Siek, 2020. "A marine carbon monoxide (CO) model with a new parameterization of microbial oxidation," Ecological Modelling, Elsevier, vol. 432(C).
  • Handle: RePEc:eee:ecomod:v:432:y:2020:i:c:s0304380020302738
    DOI: 10.1016/j.ecolmodel.2020.109203
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:432:y:2020:i:c:s0304380020302738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.