Author
Listed:
- Bellin, Nicolò
- Groppi, Maria
- Rossi, Valeria
Abstract
Resting life stages (e.g. dormant seeds and resting eggs) have important implications for ecological and evolutionary processes. In this study, we simulated the impact of different environmental scenarios on the dynamics of resting eggs that make up an “egg bank” of a common fresh water ostracod, Heterocypris incongruens (Crustacea). Our goal was to investigate how the persistence and the wind-mediated spatial distribution of the species in vernal temporary ponds on Lampedusa Island (Southern Italy) were affected. A general model for selection on seed germination in unpredictable environments was used to simulate within pond egg bank dynamics. Metapopulation dynamics were simulated using Levin's and Hanski's models assuming three generalized spatial patterns of pond distribution (random, aggregated along the main wind direction, evenly spaced along the main wind direction) and two dispersion processes (random walk and wind shear). We applied global sensitivity and uncertainty analysis (GSUA) to the models. We estimated the egg bank growth rate based on 30-year simulations under present climatic conditions, and assuming a 2°C rise in winter temperature under global climate change. Hatching rate and deterioration rate were the most important input factors for the dynamics of the egg bank. In warmer winter conditions, the probability that a pond water balance is positive, a reliable hydroperiod estimation, was the most important factor in the egg bank simulation dynamics. Regular distribution of ponds along the wind gradient and wind shear, had the highest dispersal and colonizing potential, considering the percentage of empty ponds reached (60 %). Levins’ model predicted that the equilibrium varied between 0 and 8 % of colonized ponds while Hanski's model predicted values between 0 and 20 %. In Hanski's model the rescue effect increased the probability of occupied ponds. Potential colonizing resting eggs and extinction rate were positively and negatively correlated to the percentage of colonized ponds, respectively. Our simulations can be generalized to aquatic invertebrate taxa that inhabit temporary ponds, have egg banks, colonize habitats using few propagules and disperse passively by wind.
Suggested Citation
Bellin, Nicolò & Groppi, Maria & Rossi, Valeria, 2020.
"A model of egg bank dynamics in ephemeral ponds,"
Ecological Modelling, Elsevier, vol. 430(C).
Handle:
RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301988
DOI: 10.1016/j.ecolmodel.2020.109126
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020301988. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.