IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v419y2020ics0304380020300326.html
   My bibliography  Save this article

Evolution forms of land systems based on ascendency and overhead: A case study of Shaanxi Province, China

Author

Listed:
  • Li, Fei
  • Zhou, Meijun
  • Shao, Jiaqi
  • Qin, Zhangxuan

Abstract

There were three basic forms of land system evolution: fluctuation, degradation and optimization. Based on the basic principles of system analysis, this study established a framework for analyzing the evolution form of land systems according to the sustainability and the relationship between ascendency and overhead, and then identified the evolution froms of land systems in Shaanxi Province. The results showed that the evolution of land systems in Shaanxi Province was in a fluctuation form and its sustainability showed a trend of increasing first and then decreasing between 1980 and 2015. The sustainability of land system evolution in Loess Plateau and Guanzhong Basin also increased first and then decreased, the changes in Loess Plateau were particularly significant and reached an optimization form during 1990–2000 and 2005–2010. The land system evolution in Guanzhong Basin in a less sustainable form of fluctuation after 2000. Land systems in Qinba Mountain were in an optimization form except for during 1980–1990 and 2005–2010. All three geographic units evolved in an optimization form between 1990 and 2000, and the sustainability of land system evolution in Shaanxi Province has increased from north to south both in 2000–2005 and 2010–2015; however, its sustainability weakened from north to south in 2005–2010. The verification of the results based on the information entropy change of the land systems showed that it was feasible and credible to distinguish the evolution form of land systems based on ascendency and overhead.

Suggested Citation

  • Li, Fei & Zhou, Meijun & Shao, Jiaqi & Qin, Zhangxuan, 2020. "Evolution forms of land systems based on ascendency and overhead: A case study of Shaanxi Province, China," Ecological Modelling, Elsevier, vol. 419(C).
  • Handle: RePEc:eee:ecomod:v:419:y:2020:i:c:s0304380020300326
    DOI: 10.1016/j.ecolmodel.2020.108960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020300326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.108960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kharrazi, Ali & Rovenskaya, Elena & Fath, Brian D. & Yarime, Masaru & Kraines, Steven, 2013. "Quantifying the sustainability of economic resource networks: An ecological information-based approach," Ecological Economics, Elsevier, vol. 90(C), pages 177-186.
    2. Ness, Barry & Urbel-Piirsalu, Evelin & Anderberg, Stefan & Olsson, Lennart, 2007. "Categorising tools for sustainability assessment," Ecological Economics, Elsevier, vol. 60(3), pages 498-508, January.
    3. Nathan Moore & Gopal Alagarswamy & Bryan Pijanowski & Philip Thornton & Brent Lofgren & Jennifer Olson & Jeffrey Andresen & Pius Yanda & Jiaguo Qi, 2012. "East African food security as influenced by future climate change and land use change at local to regional scales," Climatic Change, Springer, vol. 110(3), pages 823-844, February.
    4. Li, Y. & Yang, Z.F., 2011. "Quantifying the sustainability of water use systems: Calculating the balance between network efficiency and resilience," Ecological Modelling, Elsevier, vol. 222(10), pages 1771-1780.
    5. Goerner, Sally J. & Lietaer, Bernard & Ulanowicz, Robert E., 2009. "Quantifying economic sustainability: Implications for free-enterprise theory, policy and practice," Ecological Economics, Elsevier, vol. 69(1), pages 76-81, November.
    6. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaodan Zhang & Fei Li & Kai Li & Laiding Sun & Haijuan Yang, 2022. "The Influence of Space Transformation of Land Use on Function Transformation and the Regional Differences in Shaanxi Province," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    2. Zhang, Qianxi & Li, Fei, 2022. "Correlation between land use spatial and functional transition: a case study of Shaanxi Province, China," Land Use Policy, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrett, Stuart R. & Sheble, Laura & Moody, James & Anway, Evan C., 2018. "Bibliometric review of ecological network analysis: 2010–2016," Ecological Modelling, Elsevier, vol. 382(C), pages 63-82.
    2. Carey W. King, 2016. "Information Theory to Assess Relations Between Energy and Structure of the U.S. Economy Over Time," Biophysical Economics and Resource Quality, Springer, vol. 1(2), pages 1-33, December.
    3. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    4. Jiali Huang & Robert E Ulanowicz, 2014. "Ecological Network Analysis for Economic Systems: Growth and Development and Implications for Sustainable Development," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-8, June.
    5. Kharrazi, Ali & Rovenskaya, Elena & Fath, Brian D. & Yarime, Masaru & Kraines, Steven, 2013. "Quantifying the sustainability of economic resource networks: An ecological information-based approach," Ecological Economics, Elsevier, vol. 90(C), pages 177-186.
    6. Hongkuan Zang & Lirong Zhang & Ye Xu & Wei Li, 2020. "Dynamic Input–Output Analysis of a Carbon Emission System at the Aggregated and Disaggregated Levels: A Case Study in the Northeast Industrial District," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    7. Fang, Delin & Chen, Bin, 2019. "Information-based ecological network analysis for carbon emissions," Applied Energy, Elsevier, vol. 238(C), pages 45-53.
    8. Ali Kharrazi & Elena Rovenskaya & Brian D Fath, 2017. "Network structure impacts global commodity trade growth and resilience," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-13, February.
    9. Gunnar Prause & Gunnar Prause & Tarmo Tuisk & Eunice Omolola Olaniyi, 2019. "Between sustainability, social cohesion and security. Regional development in North-Eastern Estonia," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(3), pages 1235-1254, March.
    10. Francisco Orlando Rosales & Brian D. Fath & Grace Yolanda Llerena, 2023. "Quantifying a virtual water metabolic network of the Metropolitan District of Quito, Ecuador using ecological network methods," Journal of Industrial Ecology, Yale University, vol. 27(5), pages 1304-1318, October.
    11. Claudia Parra Paitan & Peter H. Verburg, 2019. "Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    12. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    13. Youjung Kim & Galen Newman, 2019. "Climate Change Preparedness: Comparing Future Urban Growth and Flood Risk in Amsterdam and Houston," Sustainability, MDPI, vol. 11(4), pages 1-24, February.
    14. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    15. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    16. Jean-Marc Douguet & Pierre Failler & Gianluca Ferraro, 2022. "Sustainability Assessment of the Societal Costs of Fishing Activities in a Deliberative Perspective," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    17. Fabien Martinez, 2014. "Corporate strategy and the environment: towards a four-dimensional compatibility model for fostering green management decisions," Post-Print hal-02887618, HAL.
    18. Diana Tuomasjukka & Staffan Berg & Marcus Lindner, 2013. "Managing Sustainability of Fennoscandian Forests and Their Use by Law and/or Agreement: For Whom and Which Purpose?," Sustainability, MDPI, vol. 6(1), pages 1-32, December.
    19. Panyam, Varuneswara & Huang, Hao & Davis, Katherine & Layton, Astrid, 2019. "Bio-inspired design for robust power grid networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Georgiadou, Maria Christina & Hacking, Theophilus & Guthrie, Peter, 2012. "A conceptual framework for future-proofing the energy performance of buildings," Energy Policy, Elsevier, vol. 47(C), pages 145-155.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:419:y:2020:i:c:s0304380020300326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.