IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v411y2019ics0304380019302819.html
   My bibliography  Save this article

Annelid polychaetes experience metabolic acceleration as other Lophotrochozoans: Inferences on the life cycle of Arenicola marina with a Dynamic Energy Budget model

Author

Listed:
  • De Cubber, Lola
  • Lefebvre, Sébastien
  • Lancelot, Théo
  • Denis, Lionel
  • Gaudron, Sylvie Marylène

Abstract

Arenicola marina is a polychaete (Lophotrochozoan) displaying a complex bentho-pelagic life cycle with two larval dispersal phases, only partially described up to now. A Dynamic Energy Budget (DEB) model was applied to the species in order to reconstruct its life cycle and growth under in situ environmental conditions. Two types of DEB models are usually applied to other Lophotrochozoans displaying similar life cycles: the standard (std-) model, applied to polychaetes (5 entries among the 1524 of the Add-my-Pet database on the 18/10/2018), and the abj-model, which includes an acceleration of metabolism between birth and metamorphosis, and which has been applied to most molluscs (77 abj-entries out of the 80 mollusc entries) enabling better fit predictions for the early life stages. The parameter estimation was performed with both models to assess the suitability of an abj-model for A. marina. The zero-variate dataset consisted of length and age data at different life cycle stages, the lifespan, the maximum observed length, and the wet weight of an egg. The uni-variate dataset consisted of two growth experiments from the literature at two food levels and several temperatures, laboratory data of oxygen consumption at several temperatures, and fecundity for different lengths. The predictions of the abj-model fitted better to the data (SMSE = 0.29). The acceleration coefficient was ca 11, which is similar to mollusc values. The field growth curves and the scaled functional responses (as a proxy of food levels) were suitably reconstructed with the new parameter set. The reconstruction of the early life-stages chronology according to in situ environmental conditions of a temperate marine ecosystem indicated a first dispersal phase of 5 days followed by a 7 months temporary settlement before a second dispersal phase in spring, at the end of metamorphosis. We emphasize the need for using abj-models for polychaetes in future studies.

Suggested Citation

  • De Cubber, Lola & Lefebvre, Sébastien & Lancelot, Théo & Denis, Lionel & Gaudron, Sylvie Marylène, 2019. "Annelid polychaetes experience metabolic acceleration as other Lophotrochozoans: Inferences on the life cycle of Arenicola marina with a Dynamic Energy Budget model," Ecological Modelling, Elsevier, vol. 411(C).
  • Handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019302819
    DOI: 10.1016/j.ecolmodel.2019.108773
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302819
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.108773?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galasso, Helena Lopes & Lefebvre, Sébastien & Aliaume, Catherine & Sadoul, Bastien & Callier, Myriam D., 2020. "Using the Dynamic Energy Budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multi-trophic aquaculture system," Ecological Modelling, Elsevier, vol. 437(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:411:y:2019:i:c:s0304380019302819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.