IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v406y2019icp44-49.html
   My bibliography  Save this article

Dealing with physical barriers in bottlenose dolphin (Tursiops truncatus) distribution

Author

Listed:
  • Martínez-Minaya, Joaquín
  • Conesa, David
  • Bakka, Haakon
  • Pennino, Maria Grazia

Abstract

Worldwide, cetacean species have started to be protected, but they are still very vulnerable to accidental damage from an expanding range of human activities at sea. To properly manage these potential threats we need a detailed understanding of the seasonal distributions of these highly mobile populations. To achieve this goal, a growing effort has been underway to develop species distribution models (SDMs) that correctly describe and predict preferred species areas. However, accuracy is not always easy to achieve when physical barriers, such as islands, are present. Indeed, SDMs assume, if only implicitly, that the spatial effect is stationary, and that correlation is only dependent on the distance between observations and not on the direction or a spatial coordinates. The application of stationary SDMs in these cases could lead to incorrect predictions and, consequently, to uninformed decision making. In this study, we identify vulnerable habitats for the bottlenose dolphin in the Archipelago de La Maddalena, Northern Sardinia (Italy) using Bayesian hierarchical SDMs that account for the physical barriers issue and provide a full specification of the associated uncertainty. The approach we propose constitutes a major step forward in the understanding of cetacean species in many ecosystems where physical, geographical and topographical barriers are present.

Suggested Citation

  • Martínez-Minaya, Joaquín & Conesa, David & Bakka, Haakon & Pennino, Maria Grazia, 2019. "Dealing with physical barriers in bottlenose dolphin (Tursiops truncatus) distribution," Ecological Modelling, Elsevier, vol. 406(C), pages 44-49.
  • Handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:44-49
    DOI: 10.1016/j.ecolmodel.2019.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380019302030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2019.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rufener, Marie-Christine & Kinas, Paul Gerhard & Nóbrega, Marcelo Francisco & Lins Oliveira, Jorge Eduardo, 2017. "Bayesian spatial predictive models for data-poor fisheries," Ecological Modelling, Elsevier, vol. 348(C), pages 125-134.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    5. David Bolin & Vilhelm Verendel & Meta Berghauser Pont & Ioanna Stavroulaki & Oscar Ivarsson & Erik Håkansson, 2021. "Functional ANOVA modelling of pedestrian counts on streets in three European cities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1176-1198, October.
    6. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    7. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    8. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    9. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    10. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    11. Luis A. Barboza & Shu Wei Chou Chen & Marcela Alfaro Córdoba & Eric J. Alfaro & Hugo G. Hidalgo, 2023. "Spatio‐temporal downscaling emulator for regional climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    12. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    13. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    14. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    15. Firoozeh Rivaz & Majid Jafari Khaledi, 2015. "Bayesian spatial prediction of skew and censored data via a hybrid algorithm," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1993-2009, September.
    16. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    17. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    18. Naeimehossadat Asmarian & Seyyed Mohammad Taghi Ayatollahi & Zahra Sharafi & Najaf Zare, 2019. "Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran," IJERPH, MDPI, vol. 16(22), pages 1-13, November.
    19. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    20. Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres Prieto, 2018. "Spatio-Temporal Modeling of Zika and Dengue Infections within Colombia," IJERPH, MDPI, vol. 15(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:406:y:2019:i:c:p:44-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.