Author
Listed:
- Chan, Bunyeth
- Sor, Ratha
- Ngor, Peng Bun
- Baehr, Christophe
- Lek, Sovan
Abstract
The main challenges for ecological studies are the complexity and non-stationarity of data that are difficult to handle using traditional modelling methods. Thus, to address these problems, modern modelling techniques have been developed and introduced for applications. In time-series data, the cross-wavelet transform (CWT) and cross-correlation function (CCF) serve as promising tools to analyze the dynamics of fish populations through time and space. Here, we employed these two well-known time-series modelling approaches to model the spatial and temporal dynamics of small mud carp species (Henicorhynchus lobatus and Henicorhynchus siamensis) and examine the influence of flow pulses on their dynamics using spatial and time-series data collected from the Tonle Sap Lake and River System. The phase angle given by the CWT provided a useful tool for statistically detecting and reconstructing the phase relationship between the two time series of fish data. Moreover, the correlation coefficients at each lag between the water level and fish abundance identified by the CCF provided a mechanism to understand how the flow pulse influenced the dynamics of fish. The results showed that H. lobatus moved out of the floodplain and the lake earlier than H. siamensis. Herein, H. lobatus retreats slower than H. siamensis in the Tonle Sap Lake, but they retreated at similar speeds when they reach the Tonle Sap River. This suggests that the two species respond differently to the out-flow pulse only when they are inside the TSL, indicating the main role of flow pulses in determining the occurrence and movement of fish in the Tonle Sap Ecosystem. We also discussed the role and applications of these modelling approaches for linking the changes in environmental parameters and fish. The CWT and CCF, based on our results, are helpful modelling approaches for analyzing time-series data to understand the phase relationship and the periodicity of synchronisation (joint periodicity), i.e. the role of environmental factors in shaping fish occurrence and movement in a flood-pulse ecosystem.
Suggested Citation
Chan, Bunyeth & Sor, Ratha & Ngor, Peng Bun & Baehr, Christophe & Lek, Sovan, 2019.
"Modelling spatial and temporal dynamics of two small mud carp species in the Tonle Sap flood-pulse ecosystem,"
Ecological Modelling, Elsevier, vol. 392(C), pages 82-91.
Handle:
RePEc:eee:ecomod:v:392:y:2019:i:c:p:82-91
DOI: 10.1016/j.ecolmodel.2018.11.007
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:392:y:2019:i:c:p:82-91. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.