IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v385y2018icp133-144.html
   My bibliography  Save this article

A state-dependent model for assessing the population consequences of disturbance on income-breeding mammals

Author

Listed:
  • McHuron, Elizabeth A.
  • Schwarz, Lisa K.
  • Costa, Daniel P.
  • Mangel, Marc

Abstract

Human activities continue to expand in marine and terrestrial environments, leading to increased interactions with wildlife that can have negative impacts on population dynamics. Approaches for quantifying how these interactions translate to population-level effects are therefore crucial for effective management practices and balancing human-wildlife tradeoffs. We developed a method using state-dependent behavioral theory implemented via Stochastic Dynamic Programming (SDP) for predicting the population consequences of disturbance on the physiology and reproductive behavior of an income-breeding mammal, using California sea lions (Zalophus californianus) as a motivating species. Emergent properties of the model included reproductive characteristics associated with long-lived species, such as variation in the age at first reproduction, early termination of pregnancy, and skipped breeding. In undisturbed model simulations, reproductive rates and the average wean date were consistent with empirically-derived estimates from sea lions and other marine mammals, highlighting the utility of this model for quantifying fecundity estimates of data-deficient species and addressing fundamental ecological processes. In disturbed model simulations, exposure to prolonged, repetitive disturbances negatively impacted population growth; in addition, short, infrequent disturbances had the potential for adverse effects depending on the behavioral response of sea lions and the probability of being disturbed. The adverse effect of disturbance on population dynamics was due to a combination of reduced pup recruitment (survival to age one) resulting from a lower wean mass and increased abortion rates that led to skipped reproductive years, both of which have been documented for marine mammal populations experiencing natural fluctuations in prey availability. The derivation of state- and time-dependent reproductive decisions using an SDP model is an effective approach that links behavioral and energetic effects at the individual level to changes at the population level, and one that serves a dual purpose in the ability to quantify basic biological parameters and address ecological questions irrespective of disturbance.

Suggested Citation

  • McHuron, Elizabeth A. & Schwarz, Lisa K. & Costa, Daniel P. & Mangel, Marc, 2018. "A state-dependent model for assessing the population consequences of disturbance on income-breeding mammals," Ecological Modelling, Elsevier, vol. 385(C), pages 133-144.
  • Handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:133-144
    DOI: 10.1016/j.ecolmodel.2018.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:133-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.