Author
Listed:
- Moudrý, Vítězslav
- Lecours, Vincent
- Gdulová, Kateřina
- Gábor, Lukáš
- Moudrá, Lucie
- Kropáček, Jan
- Wild, Jan
Abstract
It is now widely acknowledged that the increasing availability of remotely sensed data facilitates ecological modelling. Digital elevation models (DEMs) are arguably one of the most common remote sensing products used in this context. Topographic indices (e.g. slope, orientation, rugosity) derived from DEMs are widely used as surrogates for field-measured environmental variables. Available global DEMs, such as those from the shuttle radar topography mission (SRTM), however, do not provide information on bare-earth elevation as they measure elevation of the highest objects above the ground (e.g. canopy). This affects the derived topographic indices and limits the use of global DEMs in ecological modelling. Unfortunately, most ecological studies ignore this limitation despite the fact that methods to remove the vegetation offset have been developed. We used high resolution LiDAR DTM to assess the accuracy of two newly available global bare-earth DEMs where such methods were applied and to compare them with the SRTM DEM. Furthermore, we assessed the effect of DEMs’ vertical error on species distribution models (SDMs) by calculating slope and topographic wetness index (TWI) from these different models and evaluating their suitability for SDMs by adopting a virtual species approach. We simulated virtual species based on slope and TWI derived from accurate LiDAR DTM at three resolutions (30 m, 90 m and 900 m) and developed univariate generalized models to assess the performance of the bare-earth and SRTM DEMs. Our results show that the vertical error in both newly available, vegetation-corrected global DEMs is indeed successfully reduced. The overall vertical root mean squared error (RMSE) was 10.52 m for SRTM, while it was 6.80 m and 6.25 m for the two global bare-earth DEMs. The effect of the vertical error on SDMs was most significant at finer spatial resolutions. Using SRTM DEM, as opposed to a more accurate bare-earth DEM, led to a decline in area under curve (AUC) values from 0.94 to 0.77. SDMs fitted with slope and TWI derived from new global bare-earth DTMs performed slightly better than SRTM. Since methods for vegetation-offset removal in DEMs exist and corrected DEMs are freely available, we argue that the vertical accuracy of DEMs should be more consistently considered. Local, high-accuracy DEMs should be used where available; in remaining instances, however, global DEMs where vertical bias was minimized should be used in ecological modelling. Further improvement of global DEMs at 30 m and better resolutions are needed to enhance accuracy of derived indices and ecological models.
Suggested Citation
Moudrý, Vítězslav & Lecours, Vincent & Gdulová, Kateřina & Gábor, Lukáš & Moudrá, Lucie & Kropáček, Jan & Wild, Jan, 2018.
"On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs,"
Ecological Modelling, Elsevier, vol. 383(C), pages 3-9.
Handle:
RePEc:eee:ecomod:v:383:y:2018:i:c:p:3-9
DOI: 10.1016/j.ecolmodel.2018.05.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Sun, Yuanyuan & Mao, Xianqiang & Liu, Gengyuan & Yin, Xinan & Zhao, Yanwei, 2020.
"Modelling the effects of energy taxes on ecological footprint transfers in China's foreign trade,"
Ecological Modelling, Elsevier, vol. 431(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:383:y:2018:i:c:p:3-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.