IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v375y2018icp30-44.html
   My bibliography  Save this article

Modelling benthic invasion by the colonial gastropod Crepidula fornicata and its competition with the bivalve Pecten maximus. 2. Coupling the 0D model of colony-forming species to a connectivity matrix for a realistic distributed simulation of benthic invasion

Author

Listed:
  • Ménesguen, Alain
  • Hachet, Aloïs
  • Grégoris, Thomas

Abstract

The anthropogenic introduction in U.K. waters of the north-American marine gastropod Crepidula fornicata (Linné, 1758), commonly called slipper limpet, and its consecutive spreading has led in less than a century to the invasion of a part of benthic grounds along the North-European coasts. Competition for space has hampered the maintenance of the native scallop Pecten maximus, whereas dredge clogging has drastically limited scallop fishing, especially in the Western English Channel. In order to assess the possible future distribution and abundance of both species (Crepidula and Pecten), an original model of slipper limpet chains joined to a simple year-class model of the scallop (Ménesguen and Grégoris, 2017) has been coupled to a connectivity matrix summarizing the annual dispersion of emitted larvae in a realistic marine domain. This distributed model can explore the dynamics of both populations at the century scale and has been applied at two different geographical scales: a local one (the bays of Brest and Douarnenez, Western Brittany, France) and a regional one (Bay of Biscay and English Channel). First eigenvectors of the connectivity matrix are used to delineate the main retention areas. For each species taken alone, simulations starting with a few animals in different spots do converge in less than a century towards the same geographic distribution, compatible with the actual field distribution. This suggests that hydrodynamic patterns of larval drift create a strong attractor for these populations; it is reached by different routes of colonization, depending on the initial inoculation. The non-linear interaction created by the lack of space when the populations have filled the benthic area seems to be stronger for scallop populations than for slipper limpets, because of the permanent capacity of Crepidula beds to fix some larvae on the top of existing colonies. Whereas the scallop abundance experiences a rather large limit-cycle, with a dominant 11 years period and a lot of harmonics, the slipper limpet has commonly a stable steady state abundance. Competition between both populations tends to lower the mean scallop abundance and to lengthen and damp its fundamental period of oscillations. Simulated distributions can be locally improved by linking the larval survival to a distributed environmental stressor, as the salinity for scallop or a metallic contamination for the slipper limpet in the case of the bay of Brest.

Suggested Citation

  • Ménesguen, Alain & Hachet, Aloïs & Grégoris, Thomas, 2018. "Modelling benthic invasion by the colonial gastropod Crepidula fornicata and its competition with the bivalve Pecten maximus. 2. Coupling the 0D model of colony-forming species to a connectivity matri," Ecological Modelling, Elsevier, vol. 375(C), pages 30-44.
  • Handle: RePEc:eee:ecomod:v:375:y:2018:i:c:p:30-44
    DOI: 10.1016/j.ecolmodel.2018.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018300760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bendtsen, Jørgen & Hansen, Jørgen L.S., 2013. "A model of life cycle, connectivity and population stability of benthic macro-invertebrates in the North Sea/Baltic Sea transition zone," Ecological Modelling, Elsevier, vol. 267(C), pages 54-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas, Yoann & Razafimahefa, Ntsoa Rakoto & Ménesguen, Alain & Bacher, Cédric, 2020. "Multi-scale interaction processes modulate the population response of a benthic species to global warming," Ecological Modelling, Elsevier, vol. 436(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:375:y:2018:i:c:p:30-44. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.