IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v356y2017icp117-126.html
   My bibliography  Save this article

Crown plasticity in Scots pine (Pinus sylvestris L.) as a strategy of adaptation to competition and environmental factors

Author

Listed:
  • Uria-Diez, Jaime
  • Pommerening, Arne

Abstract

Competition for canopy space is a major ecological process in forest dynamics and some tree species are able to shift their crowns away from competition pressure to improve light capture. As a result canopy structure is an expression of the spatial pattern of resource acquisition. A novel combination of spatial analysis, tessellations and computer simulations of crown movements allowed us to disentangle the main processes that govern crown movements in Pinus sylvestris L. forests. By applying spatial point process statistics to three sets of coordinates (stem, crown and tessellation centre points), we analysed and modelled the interaction between individuals along different tree-crown development stages in Valsain forest, Sierra of Guadarrama (Spain). Overall we found that Scots pine trees were able to respond to the presence of neighbours in monospecific stands. The trees involved tended to avoid competition by shifting their crowns towards empty spaces. Mature trees showed more crown displacement than smaller trees and made an effective use of canopy space. The efficient use of space in older stands was indicated by more regular crown patterns compared to those of younger stands, which usually were more clustered. We also found that crown asymmetry was often a combination of some minor abiotic and biotic ecological processes. In our study, wind and slope did not have a big effect on crown displacement, while biotic interactions showed a strong effect on canopy structure causing trees to be regularly distributed and thus using canopy space more efficiently.

Suggested Citation

  • Uria-Diez, Jaime & Pommerening, Arne, 2017. "Crown plasticity in Scots pine (Pinus sylvestris L.) as a strategy of adaptation to competition and environmental factors," Ecological Modelling, Elsevier, vol. 356(C), pages 117-126.
  • Handle: RePEc:eee:ecomod:v:356:y:2017:i:c:p:117-126
    DOI: 10.1016/j.ecolmodel.2017.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380017301515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engel, Markus & Körner, Michael & Berger, Uta, 2018. "Plastic tree crowns contribute to small-scale heterogeneity in virgin beech forests—An individual-based modeling approach," Ecological Modelling, Elsevier, vol. 376(C), pages 28-39.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:356:y:2017:i:c:p:117-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.