IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v353y2017icp95-106.html
   My bibliography  Save this article

Wetland mapping by fusing fine spatial and hyperspectral resolution images

Author

Listed:
  • Chen, Bin
  • Chen, Lifan
  • Lu, Ming
  • Xu, Bing

Abstract

Despite efforts and progress have been made in wetland mapping using multi-source remotely sensed data, a fine spatial and spectral resolution dynamic modeling of wetland coverage is limited. This research proposed a fusion model to generate fine-spatial-spectral-resolution images by blending multispectral images with fine spatial resolution and hyperspectral images with coarse spatial resolution. Applying the China Environment 1A series satellite (HJ-1A) CCD/HSI data, we showed that the proposed model produced reliable dataset that was not only able to capture spectral fidelity, but also could preserve spatial details. By integrating both fine spatial details and hyperspectral signatures, we further conducted a guided filtering based spectral-spatial mapping on the Poyang Lake wetland. Compared with the classification result of the CCD image, a significant higher classification accuracy of the synthetic fused image was achieved. Results also showed that the final guided-filtering based mapping result could remove potential misclassification biases and achieve higher accuracy than previous pixelwise classification methods Our study indicated a straightforward approach to blend multi-source remotely sensed data to generate reliable, high-quality dynamic dataset for wetland mapping and ecological modelling. The synthetic combination of spatial and hyperspectral details could improve our understanding of the significance of wetland ecosystem.

Suggested Citation

  • Chen, Bin & Chen, Lifan & Lu, Ming & Xu, Bing, 2017. "Wetland mapping by fusing fine spatial and hyperspectral resolution images," Ecological Modelling, Elsevier, vol. 353(C), pages 95-106.
  • Handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:95-106
    DOI: 10.1016/j.ecolmodel.2017.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438001730011X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2017.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Powell, S.J. & Letcher, R.A. & Croke, B.F.W., 2008. "Modelling floodplain inundation for environmental flows: Gwydir wetlands, Australia," Ecological Modelling, Elsevier, vol. 211(3), pages 350-362.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Wei, 2011. "A multi-objective optimization approach to allocate environmental flows to the artificially restored wetlands of China's Yellow River Delta," Ecological Modelling, Elsevier, vol. 222(2), pages 261-267.
    2. Chen, H. & Zhao, Y.W., 2011. "Evaluating the environmental flows of China's Wolonghu wetland and land use changes using a hydrological model, a water balance model, and remote sensing," Ecological Modelling, Elsevier, vol. 222(2), pages 253-260.
    3. Ralph Mac Nally & Gregory F. B. Horrocks & Hania Lada, 2017. "Anuran responses to pressures from high-amplitude drought–flood–drought sequences under climate change," Climatic Change, Springer, vol. 141(2), pages 243-257, March.
    4. J. Teng & J. Vaze & D. Dutta & S. Marvanek, 2015. "Rapid Inundation Modelling in Large Floodplains Using LiDAR DEM," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2619-2636, June.
    5. Wen, Li & Yang, Xihua & Saintilan, Neil, 2012. "Local climate determines the NDVI-based primary productivity and flooding creates heterogeneity in semi-arid floodplain ecosystem," Ecological Modelling, Elsevier, vol. 242(C), pages 116-126.
    6. Haiyan Duan & Menghong Xu & Yu Cai & Xianen Wang & Jialong Zhou & Qiong Zhang, 2019. "A Holistic Wetland Ecological Water Replenishment Scheme with Consideration of Seasonal Effect," Sustainability, MDPI, vol. 11(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:353:y:2017:i:c:p:95-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.