IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v337y2016icp200-210.html
   My bibliography  Save this article

Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions

Author

Listed:
  • Aparicio Medrano, E.
  • van de Wiel, B.J.H.
  • Uittenbogaard, R.E.
  • Dionisio Pires, L.M.
  • Clercx, H.J.H.

Abstract

This study introduces a coupled flow-biology computational model based on scaling methods and dimensionless numbers. The aim is to illustrate the validity of this model for the investigation of vertical migration of colonies of the cyanobacterium Microcystis aeruginosa under turbulent flow conditions and affected by (light-induced) assimilation/respiration processes. This model connects the distinct time scales of turbulence (typically minutes for the integral time scale) and light-induced mass-density changes of cyanobacteria (diurnal). To compute the full Microcystis vertical migration cycles we combine Direct Numerical Simulations (DNS) of turbulence and this scaling approach. The Microcystis colonies are subjected to turbulence and DNS allows computation of their trajectories with a particle tracking algorithm. The latter is based on a simplified version of the Maxey-Riley equation describing the buoyancy and hydrodynamic forces on the colonies and requires knowledge of the smallest turbulent flow scales (down to the Kolmogorov scale, thus requiring DNS). The coupled flow-biology model proves to capture natural diurnal migration of Microcystis colonies. Under very low turbulence conditions Microcystis shows a quasi-periodic daily migration where the Stokes drag and the buoyancy force are predominant. Higher turbulence conditions override such periodicity, and mix the colonies thoroughly through the water column. Our analysis yields the buoyancy Stokes number Stb, which distinguishes the deterministic buoyancy dominated migration over the more chaotic random colony excursions due to turbulence.

Suggested Citation

  • Aparicio Medrano, E. & van de Wiel, B.J.H. & Uittenbogaard, R.E. & Dionisio Pires, L.M. & Clercx, H.J.H., 2016. "Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions," Ecological Modelling, Elsevier, vol. 337(C), pages 200-210.
  • Handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:200-210
    DOI: 10.1016/j.ecolmodel.2016.06.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016302423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2016.06.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aparicio Medrano, E. & Uittenbogaard, R.E. & Dionisio Pires, L.M. & van de Wiel, B.J.H. & Clercx, H.J.H., 2013. "Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes," Ecological Modelling, Elsevier, vol. 248(C), pages 41-56.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Haidong & Zheng, Zhongquan C. & Young, Bryan & Harris, Ted D., 2019. "Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir," Ecological Modelling, Elsevier, vol. 398(C), pages 20-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haidong & Zheng, Zhongquan C. & Young, Bryan & Harris, Ted D., 2019. "Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir," Ecological Modelling, Elsevier, vol. 398(C), pages 20-34.
    2. Yu, Qian & Liu, Zhaowei & Chen, Yongcan & Zhu, Dejun & Li, Na, 2018. "Modelling the impact of hydrodynamic turbulence on the competition between Microcystis and Chlorella for light," Ecological Modelling, Elsevier, vol. 370(C), pages 50-58.
    3. Wang, Chao & Feng, Tao & Wang, Peifang & Hou, Jun & Qian, Jin, 2017. "Understanding the transport feature of bloom-forming Microcystis in a large shallow lake: A new combined hydrodynamic and spatially explicit agent-based modelling approach," Ecological Modelling, Elsevier, vol. 343(C), pages 25-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:337:y:2016:i:c:p:200-210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.