IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v311y2015icp1-10.html
   My bibliography  Save this article

Modeling the influence of benthic primary production on oxygen transport through the water–sediment interface

Author

Listed:
  • Ordoñez, César
  • de la Fuente, Alberto
  • Díaz-Palma, Paula

Abstract

The context of this study is salty lagoons a few centimeters deep that are found in the arid region of the Andes Mountains in South America. The trophic structure of these aquatic ecosystems is supported by microalgae and photosynthetic bacteria located in the upper part of the sediment, and wind is the primary driver of mass and momentum transport through the water–sediment interface (WSI). This study proposes and validates, based on laboratory experiments, a simple algebraic expression computing dissolved oxygen (DO) exchange through the WSI considering benthic primary production. The algebraic expression was derived by vertically integrating DO diffusion-reaction equation in sediments divided into two layers: the upper heterogeneous layer where photosynthesis occurs and the lower layer where DO is consumed by biochemical reactions. Experiments were conducted in a wind tunnel with a water tank of variable depth that was at the downwind end of the experimental facility. Fresh sediments were placed in the middle of the tank such that DO was both consumed and produced in the sediments. This particular setup provides the required experimental conditions to measure the diffusion flux through the WSI, as well as the rate of consumption and production in the sediment, based on DO microprofiles. Based on 48 samples, the theoretical expression to compute the DO flux through the WSI was successfully validated. This expression can be used for computing DO exchanges fluxes across the WSI in shallow water bodies, where benthic primary production releases DO to the water during the day, and DO is consumed during the night.

Suggested Citation

  • Ordoñez, César & de la Fuente, Alberto & Díaz-Palma, Paula, 2015. "Modeling the influence of benthic primary production on oxygen transport through the water–sediment interface," Ecological Modelling, Elsevier, vol. 311(C), pages 1-10.
  • Handle: RePEc:eee:ecomod:v:311:y:2015:i:c:p:1-10
    DOI: 10.1016/j.ecolmodel.2015.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002045
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sohma, Akio & Sekiguchi, Yasuyuki & Kuwae, Tomohiro & Nakamura, Yoshiyuki, 2008. "A benthic–pelagic coupled ecosystem model to estimate the hypoxic estuary including tidal flat—Model description and validation of seasonal/daily dynamics," Ecological Modelling, Elsevier, vol. 215(1), pages 10-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dittrich, M. & Wehrli, B. & Reichert, P., 2009. "Lake sediments during the transient eutrophication period: Reactive-transport model and identifiability study," Ecological Modelling, Elsevier, vol. 220(20), pages 2751-2769.
    2. Sohma, Akio & Shibuki, Hisashi & Nakajima, Fumiyuki & Kubo, Atsushi & Kuwae, Tomohiro, 2018. "Modeling a coastal ecosystem to estimate climate change mitigation and a model demonstration in Tokyo Bay," Ecological Modelling, Elsevier, vol. 384(C), pages 261-289.
    3. Sohma, Akio & Imada, Riku & Nishikawa, Tetsuya & Shibuki, Hisashi, 2022. "Modeling the life cycle of four types of phytoplankton and their bloom mechanisms in a benthic-pelagic coupled ecosystem," Ecological Modelling, Elsevier, vol. 467(C).
    4. Ertürk, Ali & Sakurova, Ilona & Zilius, Mindaugas & Zemlys, Petras & Umgiesser, Georg & Kaynaroglu, Burak & Pilkaitytė, Renata & Razinkovas-Baziukas, Artūras, 2023. "Development of a pelagic biogeochemical model with enhanced computational performance by optimizing ecological complexity and spatial resolution," Ecological Modelling, Elsevier, vol. 486(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:311:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.