IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v306y2015icp67-75.html
   My bibliography  Save this article

Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques

Author

Listed:
  • Guo, Chuanbo
  • Lek, Sovan
  • Ye, Shaowen
  • Li, Wei
  • Liu, Jiashou
  • Li, Zhongjie

Abstract

Species distribution models (SDM) have been routinely used for the purpose of species conservation and biodiversity management, especially in the context of global climate change. However, there is little knowledge about the uncertainty source on the SDM for the predictions in aquatic ecosystems, especially in the large-scale research. Therefore, we contribute to the first perspective on the uncertainties of SDMs in predicting fish species distribution in lake ecosystems. In total, 92 fish species were predicted with climatic and geographical variables, respectively, using nine widely implemented species distribution models. Generally, we focused on the potential impacts from two main kinds of uncertainty sources: species characteristics (containing species prevalence, altitude range, temperature range and precipitation range) and model technique (calibration technique and evaluation technique). Finally, our results highlight that predictions from single SDM were so variable and unreliable for all species while ensemble approaches could yield more accurate predictions; we also found that there was no significant influence on the model outcomes from the evaluation measures; we emphasized that species characteristics as species prevalence, altitude range size and precipitation range size would strongly affect the outcomes of SDMs, but temperature range size didn’t show a significant influence; our findings finally verified the hypothesis that species distributed with a smaller range size could be more accurately predicted than species with large range size was plausible in aquatic ecosystems. Our research would provide promising insights into the prediction of fish species in aquatic ecosystems under the impacts of global climate change, especially for the conservation of endemic fish species in China. Moreover, our results improved the understanding of uncertainties from species characteristics and modelling techniques in species distribution model.

Suggested Citation

  • Guo, Chuanbo & Lek, Sovan & Ye, Shaowen & Li, Wei & Liu, Jiashou & Li, Zhongjie, 2015. "Uncertainty in ensemble modelling of large-scale species distribution: Effects from species characteristics and model techniques," Ecological Modelling, Elsevier, vol. 306(C), pages 67-75.
  • Handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:67-75
    DOI: 10.1016/j.ecolmodel.2014.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marmion, Mathieu & Luoto, Miska & Heikkinen, Risto K. & Thuiller, Wilfried, 2009. "The performance of state-of-the-art modelling techniques depends on geographical distribution of species," Ecological Modelling, Elsevier, vol. 220(24), pages 3512-3520.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmadi, Kourosh & Mahmoodi, Shirin & Pal, Subodh Chandra & Saha, Asish & Chowdhuri, Indrajit & Nguyen, Trinh Trong & Jarvie, Scott & Szostak, Marta & Socha, Jaroslaw & Thai, Van Nam, 2023. "Improving species distribution models for dominant trees in climate data-poor forests using high-resolution remote sensing," Ecological Modelling, Elsevier, vol. 475(C).
    2. Guo, Chuanbo & Chen, Yushun & Liu, Han & Lu, Yin & Qu, Xiao & Yuan, Hui & Lek, Sovan & Xie, Songguang, 2019. "Modelling fish communities in relation to water quality in the impounded lakes of China’s South-to-North Water Diversion Project," Ecological Modelling, Elsevier, vol. 397(C), pages 25-35.
    3. Beaumont, Linda J. & Graham, Erin & Duursma, Daisy Englert & Wilson, Peter D. & Cabrelli, Abigail & Baumgartner, John B. & Hallgren, Willow & Esperón-Rodríguez, Manuel & Nipperess, David A. & Warren, , 2016. "Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges?," Ecological Modelling, Elsevier, vol. 342(C), pages 135-146.
    4. Zhonghyun Kim & Taeyong Shim & Seo Jin Ki & Dongil Seo & Kwang-Guk An & Jinho Jung, 2021. "Evaluation of Classification Algorithms to Predict Largemouth Bass ( Micropterus salmoides ) Occurrence," Sustainability, MDPI, vol. 13(17), pages 1-11, August.
    5. Marchetto, Elisa & Da Re, Daniele & Tordoni, Enrico & Bazzichetto, Manuele & Zannini, Piero & Celebrin, Simone & Chieffallo, Ludovico & Malavasi, Marco & Rocchini, Duccio, 2023. "Testing the effect of sample prevalence and sampling methods on probability- and favourability-based SDMs," Ecological Modelling, Elsevier, vol. 477(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junhee Lee & Youngjae Yoo & Raeik Jang & Seongwoo Jeon, 2023. "Mapping the Species Richness of Woody Plants in Republic of Korea," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    2. Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.
    3. Jin Li & Maggie Tran & Justy Siwabessy, 2016. "Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-29, February.
    4. Hallstan, Simon & Johnson, Richard K. & Willén, Eva & Grandin, Ulf, 2012. "Comparison of classification-then-modelling and species-by-species modelling for predicting lake phytoplankton assemblages," Ecological Modelling, Elsevier, vol. 231(C), pages 11-19.
    5. Kyungeun Lee & Daeguen Kim & Jaegyu Cha & Seungbum Hong, 2023. "Fine-Scale Species Distribution Modeling of Abies koreana across a Subalpine Zone in South Korea for In Situ Species Conservation," Sustainability, MDPI, vol. 15(11), pages 1-15, June.
    6. Alessandro Balestrieri & Giuseppe Bogliani & Giovanni Boano & Aritz Ruiz-González & Nicola Saino & Stefano Costa & Pietro Milanesi, 2016. "Modelling the Distribution of Forest-Dependent Species in Human-Dominated Landscapes: Patterns for the Pine Marten in Intensively Cultivated Lowlands," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-14, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:306:y:2015:i:c:p:67-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.