IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v304y2015icp44-58.html
   My bibliography  Save this article

Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria

Author

Listed:
  • Mattei, M.R.
  • Frunzo, L.
  • D’Acunto, B.
  • Esposito, G.
  • Pirozzi, F.

Abstract

A 1D mathematical model for analysis and prediction of microbial interactions within multispecies biofilms including Anammox pathway is presented. The model combines the related processes of organic carbon oxidation, denitrification, nitrification and Anammox and phenomena of substrate reaction and diffusion, biomass growth and advection, detachment. The biofilm growth process is governed by nonlinear hyperbolic PDEs and substrate dynamics are dominated by semilinear parabolic PDEs. It follows a complex system of PDEs on a free boundary domain. Equations are integrated numerically by using the method of characteristics as strongly suggested by the qualitative analysis of the free boundary value problem. Mass conservation equation plays an important role in checking the accuracy of simulations. The model has been applied to simulate Anammox competition and to evaluate the influence of substrate diffusion on microbial stratification. Specific scenarios are analyzed. The results reveal that in a thick multispecies biofilm, including heterotrophic, aerobic autotrophic nitrifying and Anammox bacteria, oxygen diffusion limitation determines the formation of both aerobic and anoxic microenvironments favouring interspecies competition. In contrast, oxygen excess causes a disturbance on microbial interactions leading to Anammox bacteria loss. The model predictions may help engineers or operators to have a better insight into biofilm dynamics in order to optimize process design or practical operation.

Suggested Citation

  • Mattei, M.R. & Frunzo, L. & D’Acunto, B. & Esposito, G. & Pirozzi, F., 2015. "Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria," Ecological Modelling, Elsevier, vol. 304(C), pages 44-58.
  • Handle: RePEc:eee:ecomod:v:304:y:2015:i:c:p:44-58
    DOI: 10.1016/j.ecolmodel.2015.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015000630
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deygout, C. & Lesne, A. & Campillo, F. & Rapaport, A., 2013. "Homogenised model linking microscopic and macroscopic dynamics of a biofilm: Application to growth in a plug flow reactor," Ecological Modelling, Elsevier, vol. 250(C), pages 15-24.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fritsch, Coralie & Harmand, Jérôme & Campillo, Fabien, 2015. "A modeling approach of the chemostat," Ecological Modelling, Elsevier, vol. 299(C), pages 1-13.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:304:y:2015:i:c:p:44-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.