IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v297y2015icp33-41.html
   My bibliography  Save this article

Modeled ecosystem responses to intra-annual redistribution and levels of precipitation in a prairie grassland

Author

Listed:
  • Xu, Xiaoming
  • Li, Dejun
  • Luo, Yiqi

Abstract

Global models projected that, precipitation in Great Plains of the United States will decrease in summer and increase in spring and winter. However, few studies had carefully examined ecosystem responses to this intra-annual redistribution of precipitation. Here we used a process-based model, Terrestrial ECOsystem (TECO) Model, to evaluate responses of ecosystem carbon processes (including net primary production (NPP), heterotrophic respiration (Rh), and net ecosystem production (NEP)) and hydrological cycles (including evapotranspiration, and runoff) to precipitation redistribution at three levels (−50%, ambient, and +50% precipitation) in five soil textures (sand, sandy loam, loam, silt loam, and clay loam). Redistribution was designed by subtracting 40% summer precipitation and adding to spring and fall. Results showed that precipitation redistribution decreased NPP, Rh, and NEP at all three precipitation levels. Responses of NPP, Rh, and NEP differed in five soil textures. Redistribution slightly increased runoff and decreased evapotranspiration. Runoff was higher in coarse textured soils and lower in fine textured soils. Responses of evapotranspiration were contrary to runoff. Precipitation levels and redistribution had little effect on mean annual soil water content (SWC), especially in coarse textured soils. Our results indicated that, besides amount and timing of precipitation, the intra-annual redistribution could also affect ecosystem carbon and water processes. Moreover, the extent to which the ecosystem responses to redistribution of precipitation is largely controlled by soil texture.

Suggested Citation

  • Xu, Xiaoming & Li, Dejun & Luo, Yiqi, 2015. "Modeled ecosystem responses to intra-annual redistribution and levels of precipitation in a prairie grassland," Ecological Modelling, Elsevier, vol. 297(C), pages 33-41.
  • Handle: RePEc:eee:ecomod:v:297:y:2015:i:c:p:33-41
    DOI: 10.1016/j.ecolmodel.2014.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014005687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Claesson, Jonas & Nycander, Jonas, 2013. "Combined effect of global warming and increased CO2-concentration on vegetation growth in water-limited conditions," Ecological Modelling, Elsevier, vol. 256(C), pages 23-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter Leal Filho & Mark Mifsud & Petra Molthan-Hill & Gustavo J. Nagy & Lucas Veiga Ávila & Amanda Lange Salvia, 2019. "Climate Change Scepticism at Universities: A Global Study," Sustainability, MDPI, vol. 11(10), pages 1-13, May.
    2. Mohamed M. Mostafa, 2016. "Post-materialism, Religiosity, Political Orientation, Locus of Control and Concern for Global Warming: A Multilevel Analysis Across 40 Nations," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 128(3), pages 1273-1298, September.
    3. Mohamed M. Mostafa, 2020. "Catastrophe Theory Predicts International Concern for Global Warming," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 709-731, September.
    4. Ropero, R.F. & Aguilera, P.A. & Rumí, R., 2015. "Analysis of the socioecological structure and dynamics of the territory using a hybrid Bayesian network classifier," Ecological Modelling, Elsevier, vol. 311(C), pages 73-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:297:y:2015:i:c:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.