IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v289y2014icp96-105.html
   My bibliography  Save this article

New target fisheries lead to spatially variable food web effects in an ecosystem model of the California Current

Author

Listed:
  • Marshall, K.N.
  • Kaplan, I.C.
  • Levin, P.S.

Abstract

Growing human populations put increasing demands on marine ecosystems. Studies have demonstrated the importance of large biomass forage groups in model food webs, but small biomass contributors are often overlooked. Here, we predict the ecosystem effects of three potential future fisheries targeting functional groups that make up only a small proportion of total ecosystem biomass using the California Current Atlantis Model: deep demersal fish such as grenadier (Albatrossia pectoralis and Coryphaenoides acrolepis), nearshore fish such as white croaker (Genyonemus lineatus), and shortbelly rockfish (Sebastes jordani). Using a spatially explicit ecosystem model, we explored individual fishing scenarios for these groups that resulted in abundance levels of 75, 40, 25, and 0 percent of the status quo fishing scenario and a combined fishing scenario simultaneously targeting all three groups. We evaluated the effects on coast-wide biomass and describe variation in affected groups by region. Results indicate that developing fisheries on the proposed targets would have small coast-wide effects on other species. However, effects varied significantly within the ecosystem, with higher impacts concentrated in the central California region of the model. Effects of fishing all three groups simultaneously were additive in some cases coastwide, but were not additive at the regional scale. This work provides a framework for evaluating effects of new fisheries and suggests that regional effects should be evaluated within a larger management context.

Suggested Citation

  • Marshall, K.N. & Kaplan, I.C. & Levin, P.S., 2014. "New target fisheries lead to spatially variable food web effects in an ecosystem model of the California Current," Ecological Modelling, Elsevier, vol. 289(C), pages 96-105.
  • Handle: RePEc:eee:ecomod:v:289:y:2014:i:c:p:96-105
    DOI: 10.1016/j.ecolmodel.2014.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.07.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Trevor A. Branch & Reg Watson & Elizabeth A. Fulton & Simon Jennings & Carey R. McGilliard & Grace T. Pablico & Daniel Ricard & Sean R. Tracey, 2010. "The trophic fingerprint of marine fisheries," Nature, Nature, vol. 468(7322), pages 431-435, November.
    3. Kaplan, Isaac C. & Leonard, Jerry, 2012. "From krill to convenience stores: Forecasting the economic and ecological effects of fisheries management on the US West Coast," Marine Policy, Elsevier, vol. 36(5), pages 947-954.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaplan, Isaac C. & Koehn, Laura E. & Hodgson, Emma E. & Marshall, Kristin N. & Essington, Timothy E., 2017. "Modeling food web effects of low sardine and anchovy abundance in the California Current," Ecological Modelling, Elsevier, vol. 359(C), pages 1-24.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    3. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    4. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    5. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    8. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    10. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    11. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    12. Eppink, Florian V. & van den Bergh, Jeroen C.J.M., 2007. "Ecological theories and indicators in economic models of biodiversity loss and conservation: A critical review," Ecological Economics, Elsevier, vol. 61(2-3), pages 284-293, March.
    13. Janssen, Marco A. & Anderies, John M. & Walker, Brian H., 2004. "Robust strategies for managing rangelands with multiple stable attractors," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 140-162, January.
    14. Admiraal, Jeroen F. & Wossink, Ada & de Groot, Wouter T. & de Snoo, Geert R., 2013. "More than total economic value: How to combine economic valuation of biodiversity with ecological resilience," Ecological Economics, Elsevier, vol. 89(C), pages 115-122.
    15. H. Klammler & P. S. C. Rao & K. Hatfield, 2018. "Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes," Environment Systems and Decisions, Springer, vol. 38(1), pages 140-159, March.
    16. Tomczak, M.T. & Niiranen, S. & Hjerne, O. & Blenckner, T., 2012. "Ecosystem flow dynamics in the Baltic Proper—Using a multi-trophic dataset as a basis for food–web modelling," Ecological Modelling, Elsevier, vol. 230(C), pages 123-147.
    17. Florian Wagener, 2013. "Shallow lake economics run deep: nonlinear aspects of an economic-ecological interest conflict," Computational Management Science, Springer, vol. 10(4), pages 423-450, December.
    18. Bashkirtseva, Irina & Ryashko, Lev, 2017. "How environmental noise can contract and destroy a persistence zone in population models with Allee effect," Theoretical Population Biology, Elsevier, vol. 115(C), pages 61-68.
    19. Kevin Thellmann & Marc Cotter & Sabine Baumgartner & Anna Treydte & Georg Cadisch & Folkard Asch, 2018. "Tipping Points in the Supply of Ecosystem Services of a Mountainous Watershed in Southeast Asia," Sustainability, MDPI, vol. 10(7), pages 1-15, July.
    20. Rau, Anna-Lena & von Wehrden, Henrik & Abson, David J., 2018. "Temporal Dynamics of Ecosystem Services," Ecological Economics, Elsevier, vol. 151(C), pages 122-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:289:y:2014:i:c:p:96-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.