IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v274y2014icp41-49.html
   My bibliography  Save this article

Analysing changes in the southern Humboldt ecosystem for the period 1970–2004 by means of dynamic food web modelling

Author

Listed:
  • Neira, Sergio
  • Moloney, Coleen
  • Christensen, Villy
  • Cury, Philippe
  • Shannon, Lynne
  • Arancibia, Hugo

Abstract

A 22-group Ecopath model representing the southern Humboldt (SH) upwelling system in the year 1970 is constructed. The model is projected forward in time and fitted to available time series of relative biomass, catch and fishing mortality for the main fishery resources. The time series cover the period 1970 to 2004 and the fitting is conducted using the Ecopath with Ecosim (EwE) software version 5.1. The aim is to explore the relative importance of internal (trophic control) and external (fishing, physical variability) forcing on the dynamics of commercial stocks and the Southern Chilean food web. Wide decadal oscillations are observed in the biomass of commercial stocks during the analyzed period. Fishing mortality explains 21% of the variability in the time series, whereas vulnerability (v) parameters estimated using EwE explain an additional 20%. When a function affecting primary production (PP) is calculated by Ecosim to minimize the sum of squares of the time series, a further 28% of variability is explained. The best fit is obtained by using the fishing mortality time series and by searching for the best combination of v parameters and the PP function simultaneously, accounting for 69% of total variability in the time series. The PP function obtained from the best fit significantly correlates with independent time series of an upwelling index (UI; rho=0.47, p<0.05) and sea surface temperature (SST; rho=−0.45, p<0.05), representing environmental conditions in the study area during the same period of time. These results suggest that the SH ecosystem experienced at least two different environmentally distinct periods in the last three decades: (i) from 1970 to 1985 a relatively warm period with low levels of upwelling and PP, and (ii) from 1985 to 2004 a relatively cold period with increased upwelling and PP. This environmental variability can explain some of the changes in the food webs. Fishing (catch rate) and the environment (bottom-up anomaly in PP) appear to have affected the SH both at the stock and at the food web level between 1970 and 2004. The vulnerability setting indicates that the effects of external forcing factors may have been mediated by trophic controls operating in the food web.

Suggested Citation

  • Neira, Sergio & Moloney, Coleen & Christensen, Villy & Cury, Philippe & Shannon, Lynne & Arancibia, Hugo, 2014. "Analysing changes in the southern Humboldt ecosystem for the period 1970–2004 by means of dynamic food web modelling," Ecological Modelling, Elsevier, vol. 274(C), pages 41-49.
  • Handle: RePEc:eee:ecomod:v:274:y:2014:i:c:p:41-49
    DOI: 10.1016/j.ecolmodel.2013.09.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013004602
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.09.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeffrey A. Hutchings, 2000. "Collapse and recovery of marine fishes," Nature, Nature, vol. 406(6798), pages 882-885, August.
    2. Ransom A. Myers & Boris Worm, 2003. "Rapid worldwide depletion of predatory fish communities," Nature, Nature, vol. 423(6937), pages 280-283, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neira, Sergio & Moloney, Coleen & Shannon, Lynne J. & Christensen, Villy & Arancibia, Hugo & Jarre, Astrid, 2014. "Assessing changes in the southern Humboldt in the 20th century using food web models," Ecological Modelling, Elsevier, vol. 278(C), pages 52-66.
    2. Alva-Basurto, Jorge Christian & Arias-González, Jesús Ernesto, 2014. "Modelling the effects of climate change on a Caribbean coral reef food web," Ecological Modelling, Elsevier, vol. 289(C), pages 1-14.
    3. Ofir, E. & Gal, G. & Goren, M. & Shapiro, J. & Spanier, E., 2016. "Detecting changes to the functioning of a lake ecosystem following a regime shift based on static food-web models," Ecological Modelling, Elsevier, vol. 320(C), pages 145-157.
    4. Lercari, Diego & Defeo, Omar & Ortega, Leonardo & Orlando, Luis & Gianelli, Ignacio & Celentano, Eleonora, 2018. "Long-term structural and functional changes driven by climate variability and fishery regimes in a sandy beach ecosystem," Ecological Modelling, Elsevier, vol. 368(C), pages 41-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    2. Temitope Adewale & Denis Aheto & Isaac Okyere & Olufemi Soyinka & Samuel Dekolo, 2024. "Effects of Anthropogenic Activities on Sardinella maderensis (Lowe, 1838) Fisheries in Coastal Communities of Ibeju-Lekki, Lagos, Nigeria," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    3. Sugiawan, Yogi & Islam, Moinul & Managi, Shunsuke, 2017. "Global marine fisheries with economic growth," Economic Analysis and Policy, Elsevier, vol. 55(C), pages 158-168.
    4. Erhardt, Tobias & Weder, Rolf, 2020. "Shark hunting: On the vulnerability of resources with heterogeneous species," Resource and Energy Economics, Elsevier, vol. 61(C).
    5. Speirs, Douglas C. & Greenstreet, Simon P.R. & Heath, Michael R., 2016. "Modelling the effects of fishing on the North Sea fish community size composition," Ecological Modelling, Elsevier, vol. 321(C), pages 35-45.
    6. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    7. Stephanie M. Sabbagh & Gordon M. Hickey, 2019. "Social Factors Affecting Sustainable Shark Conservation and Management in Belize," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    8. Bradley Chen & Victoria Y. Fan, 2015. "Strategic Provider Behavior Under Global Budget Payment with Price Adjustment in Taiwan," Health Economics, John Wiley & Sons, Ltd., vol. 24(11), pages 1422-1436, November.
    9. Isomaa, Marleena & Kaitala, Veijo & Laakso, Jouni, 2013. "Baltic cod (Gadus morhua callarias) recovery potential under different environment and fishery scenarios," Ecological Modelling, Elsevier, vol. 266(C), pages 118-125.
    10. Dana Miller & Stefano Mariani, 2013. "Irish fish, Irish people: roles and responsibilities for an emptying ocean," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 529-546, April.
    11. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    12. Muallil, Richard N. & Mamauag, Samuel S. & Cababaro, Jeffrey T. & Arceo, Hazel O. & Aliño, Porfirio M., 2014. "Catch trends in Philippine small-scale fisheries over the last five decades: The fishers׳ perspectives," Marine Policy, Elsevier, vol. 47(C), pages 110-117.
    13. Maroto, Jose M. & Moran, Manuel, 2008. "Increasing marginal returns and the danger of collapse of commercially valuable fish stocks," Ecological Economics, Elsevier, vol. 68(1-2), pages 422-428, December.
    14. Blasiak, Robert, 2015. "Balloon effects reshaping global fisheries," Marine Policy, Elsevier, vol. 57(C), pages 18-20.
    15. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    16. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    17. Vlad Rosca & Raluca Ignat, 2014. "The Sustainability of Fish Consumption in Romania: Customer Behaviour prior and after the Country`s Adherence to the EU," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(35), pages 243-243, February.
    18. Ainsworth, C.H. & Pitcher, T.J. & Heymans, J.J. & Vasconcellos, M., 2008. "Reconstructing historical marine ecosystems using food web models: Northern British Columbia from Pre-European contact to present," Ecological Modelling, Elsevier, vol. 216(3), pages 354-368.
    19. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    20. Yiyang Liu & Sigbjorn Tveteras & Jinghua Xie, 2021. "Efficiency in Chinese Large Yellow Croaker Aquaculture: Implication for Sustainable Aquaculture in China," Sustainability, MDPI, vol. 13(24), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:274:y:2014:i:c:p:41-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.