IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v263y2013icp291-307.html
   My bibliography  Save this article

A biogeochemical model of phytoplankton productivity in an urban estuary: The importance of ammonium and freshwater flow

Author

Listed:
  • Dugdale, Richard C.
  • Wilkerson, Frances P.
  • Parker, Alexander E.

Abstract

Increased discharge of ammonium (NH4) to the San Francisco Estuary (SFE), largely in treated domestic sewage effluent, has been linked to chronically food-limited conditions and to reduced fish abundance. Elevated chlorophyll concentrations at phytoplankton bloom levels are rarely observed if the ambient NH4 concentrations are above 4μmolL−1—the NH4 paradox. In both field samples and water held in enclosures for one week, an inverse relation was observed between NH4 concentrations and nitrate (NO3) uptake by phytoplankton, likely a result of inhibition of NO3 uptake by NH4. A simple model was constructed to examine the interaction between NH4 and NO3 inputs to the estuary, with varying freshwater river flow (hereafter termed flow) conditions. Sensitivity analyses were made and initial model parameters taken from an existing oceanic biogeochemistry model. Experiments were made with the model, and showed that initial NH4 concentrations largely controlled the length of time to peak NO3 uptake and NO3 exhaustion. The model parameters were then tuned using observations from a set of enclosure experiments, and validated with results from a series of independent enclosure experiments with a variety of initial conditions. The model was run in three flow modes: (1) with no (zero) flow, (2) with flow, a fully mixed water column and a uniform light field, and (3) with flow, a fully mixed water column but with light attenuation and depth integrated values of N uptake. In the zero flow mode the model simulated enclosure experiments and when compared with enclosure results indicated the basic NH4–NO3 interactions to be correctly represented in the model. In the modes with flow, the model simulations reproduced a sharp transition from high phytoplankton productivity using both NO3 and NH4 to low productivity using only NH4, simulating the historical effects of increasing NH4 inputs to the SFE. With vertical integration to incorporate effects of irradiance, sharp boundaries at specific combinations of varying flow and NH4 inputs were observed. The model could be embedded into three dimensional models of the SFE/Delta currently being implemented for management purposes such as regulating estuarine nutrients as required by the State of California and evaluating the effects of water management decisions on salmon and protected species of fish.

Suggested Citation

  • Dugdale, Richard C. & Wilkerson, Frances P. & Parker, Alexander E., 2013. "A biogeochemical model of phytoplankton productivity in an urban estuary: The importance of ammonium and freshwater flow," Ecological Modelling, Elsevier, vol. 263(C), pages 291-307.
  • Handle: RePEc:eee:ecomod:v:263:y:2013:i:c:p:291-307
    DOI: 10.1016/j.ecolmodel.2013.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013002779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dugdale, Richard C. & Wilkerson, Frances P. & Parker, Alexander E., 2016. "The effect of clam grazing on phytoplankton spring blooms in the low-salinity zone of the San Francisco Estuary: A modelling approach," Ecological Modelling, Elsevier, vol. 340(C), pages 1-16.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:263:y:2013:i:c:p:291-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.