IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v252y2013icp32-43.html
   My bibliography  Save this article

Enhanced functionality of the redesigned hybrid evolutionary algorithm HEA demonstrated by predictive modelling of algal growth in the Wivenhoe Reservoir, Queensland (Australia)

Author

Listed:
  • Cao, Hongqing
  • Recknagel, Friedrich
  • Orr, Philip T.

Abstract

This paper presents the functionality of the newly designed hybrid evolutionary algorithm (HEA) applied for synthesizing predictive rules from complex ecological data by providing the options for: (a) modelling single or multiple rules and (b) optimizing model parameters by Hill Climbing (HC) or Differential Evolution (DE). The effectiveness of the improved HEA is tested by predictive modelling of chlorophyll-a and the tropical cyanobacteria Cylindrospermopsis monitored in the Wivenhoe Reservoir in Queensland (Australia) from 1998 to 2009. The paper validates results of the alternative optimization algorithms and model structures, and provides insights into ecological relationships captured by the models by means of sensitivity analyses.

Suggested Citation

  • Cao, Hongqing & Recknagel, Friedrich & Orr, Philip T., 2013. "Enhanced functionality of the redesigned hybrid evolutionary algorithm HEA demonstrated by predictive modelling of algal growth in the Wivenhoe Reservoir, Queensland (Australia)," Ecological Modelling, Elsevier, vol. 252(C), pages 32-43.
  • Handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:32-43
    DOI: 10.1016/j.ecolmodel.2012.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004747
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong-Kyun & Cao, Hongqing & Jeong, Kwang-Seuk & Recknagel, Friedrich & Joo, Gea-Jae, 2007. "Predictive function and rules for population dynamics of Microcystis aeruginosa in the regulated Nakdong River (South Korea), discovered by evolutionary algorithms," Ecological Modelling, Elsevier, vol. 203(1), pages 147-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xiaoqing & Recknagel, Friedrich & Chen, Qiuwen & Cao, Hongqing & Li, Ruonan, 2015. "Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation," Ecological Modelling, Elsevier, vol. 306(C), pages 216-225.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xiaoqing & Recknagel, Friedrich & Chen, Qiuwen & Cao, Hongqing & Li, Ruonan, 2015. "Spatially-explicit modelling and forecasting of cyanobacteria growth in Lake Taihu by evolutionary computation," Ecological Modelling, Elsevier, vol. 306(C), pages 216-225.
    2. Jeong, Kwang-Seuk & Jang, Ji-Deok & Kim, Dong-Kyun & Joo, Gea-Jae, 2011. "Waterfowls habitat modeling: Simulation of nest site selection for the migratory Little Tern (Sterna albifrons) in the Nakdong estuary," Ecological Modelling, Elsevier, vol. 222(17), pages 3149-3156.
    3. Kim, MinHyeok & Park, Namyong & (Bob) McKay, R.I. & Shin, Haisoo & Lee, Yun-Geun & Jeong, Kwang-Seuk & Kim, Dong-Kyun, 2014. "Improvement of complex and refractory ecological models: Riverine water quality modelling using evolutionary computation," Ecological Modelling, Elsevier, vol. 291(C), pages 205-217.
    4. Shin, Jiyoun & Kim, Kyung-Ho & Lee, Kang-Kun & Kim, Hyoung-Soo, 2010. "Assessing temperature of riverbank filtrate water for geothermal energy utilization," Energy, Elsevier, vol. 35(6), pages 2430-2439.
    5. Cao, Hongqing & Recknagel, Friedrich & Bartkow, Michael, 2016. "Spatially-explicit forecasting of cyanobacteria assemblages in freshwater lakes by multi-objective hybrid evolutionary algorithms," Ecological Modelling, Elsevier, vol. 342(C), pages 97-112.
    6. Recknagel, Friedrich & Ostrovsky, Ilia & Cao, Hongqing & Zohary, Tamar & Zhang, Xiaoqing, 2013. "Ecological relationships, thresholds and time-lags determining phytoplankton community dynamics of Lake Kinneret, Israel elucidated by evolutionary computation and wavelets," Ecological Modelling, Elsevier, vol. 255(C), pages 70-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:32-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.