IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v252y2013icp121-128.html
   My bibliography  Save this article

Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China

Author

Listed:
  • Li, Xia
  • Cui, Baoshan
  • Yang, Qichun
  • Lan, Yan
  • Wang, Tingting
  • Han, Zhen

Abstract

Macrophyte decomposition can significantly influence aquatic carbon and nutrient cycling, especially in eutrophic shallow lakes, in which incomplete decomposition of detritus may lead to sediment accumulation and accelerate lake aging. In order to explore the role of macrophyte decomposition in lake terrestrialization, six major aquatic plants (two submerged, two floating, and two emergent species) in Lake Baiyangdian were investigated in this study. Detritus of these species were placed at three sites with different pollution intensities to investigate the contributions of plant species, site nutrient condition, and their interactions on detritus decomposition. Detritus decomposition was represented by detritus mass remaining at each sampling time. Results of this study suggest that although decomposition processes are species and site specific, and the effects of species are stronger than site conditions. Initial detritus phosphorus (P)-related indicators were proved to be effective controllers for detritus decay at the later stage of the experiment. Significant interactions between site and species indicate that plant species also influenced site controls on detritus mass loss. Site effects on decomposition were significant for submerged and floating species (P<0.01), and slightly significant for emergent species (P<0.05). A mathematic two-stage decomposition model was developed based on the experimental results using stepwise analysis to analyze effects of detritus quality and site conditions on decomposition. The detritus quality indicators were the main contributors for both early and later stages of detritus decomposition, while the site nutrients only affected decomposition at the later stage.

Suggested Citation

  • Li, Xia & Cui, Baoshan & Yang, Qichun & Lan, Yan & Wang, Tingting & Han, Zhen, 2013. "Effects of plant species on macrophyte decomposition under three nutrient conditions in a eutrophic shallow lake, North China," Ecological Modelling, Elsevier, vol. 252(C), pages 121-128.
  • Handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:121-128
    DOI: 10.1016/j.ecolmodel.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012004061
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, C.F. & Meng, F.-R. & Bhatti, J.S. & Trofymow, J.A. & Arp, Paul A., 2008. "Modeling forest leaf-litter decomposition and N mineralization in litterbags, placed across Canada: A 5-model comparison," Ecological Modelling, Elsevier, vol. 219(3), pages 342-360.
    2. Schultz, Patrick & Urban, Noel R., 2008. "Effects of bacterial dynamics on organic matter decomposition and nutrient release from sediments: A modeling study," Ecological Modelling, Elsevier, vol. 210(1), pages 1-14.
    3. da Cunha Santino, Marcela Bianchessi & Bianchini, Irineu, 2008. "Carbon cycling potential from Utricularia breviscapa decomposition in a tropical oxbow lake (São Paulo, Brazil)," Ecological Modelling, Elsevier, vol. 218(3), pages 375-382.
    4. Alemanno, Sara & Mancinelli, Giorgio & Basset, Alberto, 2007. "Effects of invertebrate patch use behaviour and detritus quality on reed leaf decomposition in aquatic systems: A modelling approach," Ecological Modelling, Elsevier, vol. 205(3), pages 492-506.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lecerf, Antoine, 2017. "Methods for estimating the effect of litterbag mesh size on decomposition," Ecological Modelling, Elsevier, vol. 362(C), pages 65-68.
    2. Milan Daus & Katharina Koberger & Kaan Koca & Felix Beckers & Jorge Encinas Fernández & Barbara Weisbrod & Daniel Dietrich & Sabine Ulrike Gerbersdorf & Rüdiger Glaser & Stefan Haun & Hilmar Hofmann &, 2021. "Interdisciplinary Reservoir Management—A Tool for Sustainable Water Resources Management," Sustainability, MDPI, vol. 13(8), pages 1-21, April.
    3. Zhang, Jiarui & Jørgensen, Sven E. & Lu, Jianjian & Nielsen, Søren N. & Wang, Qiang, 2014. "A model for the contribution of macrophyte-derived organic carbon in harvested tidal freshwater marshes to surrounding estuarine and oceanic ecosystems and its response to global warming," Ecological Modelling, Elsevier, vol. 294(C), pages 105-116.
    4. Bianchini, Irineu & da Cunha Santino, Marcela Bianchessi, 2011. "Model parameterization for aerobic decomposition of plant resources drowned during man-made lakes formation," Ecological Modelling, Elsevier, vol. 222(7), pages 1263-1271.
    5. Balland, Vincent & Pollacco, Joseph A.P. & Arp, Paul A., 2008. "Modeling soil hydraulic properties for a wide range of soil conditions," Ecological Modelling, Elsevier, vol. 219(3), pages 300-316.
    6. Larocque, Guy R. & Bhatti, Jagtar S. & Boutin, Robert & Chertov, Oleg, 2008. "Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation," Ecological Modelling, Elsevier, vol. 219(3), pages 400-412.
    7. da Cunha Santino, Marcela Bianchessi & Bianchini, Irineu, 2008. "Carbon cycling potential from Utricularia breviscapa decomposition in a tropical oxbow lake (São Paulo, Brazil)," Ecological Modelling, Elsevier, vol. 218(3), pages 375-382.
    8. Kupisch, Moritz & Moenickes, Sylvia & Schlief, Jeanette & Frassl, Marieke & Richter, Otto, 2012. "Temperature-dependent consumer-resource dynamics: A coupled structured model for Gammarus pulex (L.) and leaf litter," Ecological Modelling, Elsevier, vol. 247(C), pages 157-167.
    9. Smith, Amanda C. & Bhatti, Jagtar S. & Chen, Hua & Harmon, Mark E. & Arp, Paul A., 2011. "Modelling above- and below-ground mass loss and N dynamics in wooden dowels (LIDET) placed across North and Central America biomes at the decadal time scale," Ecological Modelling, Elsevier, vol. 222(14), pages 2276-2290.
    10. Smyth, C.E. & Kurz, W.A. & Trofymow, J.A., 2011. "Including the effects of water stress on decomposition in the Carbon Budget Model of the Canadian Forest Sector CBM-CFS3," Ecological Modelling, Elsevier, vol. 222(5), pages 1080-1091.
    11. Ogbazghi, Z.M. & Tesfamariam, E.H. & Annandale, J.G., 2016. "Modelling N mineralisation from sludge-amended soils across agro-ecological zones: A case study from South Africa," Ecological Modelling, Elsevier, vol. 322(C), pages 19-30.
    12. Zhang, Chengfu & Jamieson, Rob C. & Meng, Fan-Rui & Gordon, Robert J. & Bourque, Charles P.-A., 2013. "Simulation of monthly dissolved organic carbon concentrations in small forested watersheds," Ecological Modelling, Elsevier, vol. 250(C), pages 205-213.
    13. Murphy, Paul N.C. & Ogilvie, Jae & Meng, Fan-Rui & White, Barry & Bhatti, Jagtar S. & Arp, Paul A., 2011. "Modelling and mapping topographic variations in forest soils at high resolution: A case study," Ecological Modelling, Elsevier, vol. 222(14), pages 2314-2332.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:252:y:2013:i:c:p:121-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.