IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i8p1479-1490.html
   My bibliography  Save this article

Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest

Author

Listed:
  • Xue, Bao-Lin
  • Kumagai, Tomo’omi
  • Iida, Shin’ichi
  • Nakai, Taro
  • Matsumoto, Kazuho
  • Komatsu, Hikaru
  • Otsuki, Kyoichi
  • Ohta, Takeshi

Abstract

Boreal forests play an important role in the global balance of energy and CO2. Our previous study of elaborate eddy covariance observations in a Siberian boreal larch forest, conducted both above the forest canopy and at the forest floor, revealed a significant contribution of latent heat flux (LE) from the cowberry understory to the whole ecosystem LE. Thus, in the present study, we examined what factors control the partitioning of whole ecosystem LE and CO2 flux into the understory and overstory vegetation, using detailed leaf-level physiology (for both understory and overstory vegetation) and soil respiration property measurements as well as a multilayer soil-vegetation-atmosphere transfer (SVAT) model. The modeling results showed that the larch overstory's leaf area index (LAI) and vertical profile of leaf photosynthetic capacity were major factors determining the flux partitioning in this boreal forest ecosystem. This is unlike other forest ecosystems that tend to have dense LAI. We concluded that control of the larch overstory's LAI had a relationship with both the coexistence of the larch with the cowberry understory and with the water resources available to the total forest ecosystem.

Suggested Citation

  • Xue, Bao-Lin & Kumagai, Tomo’omi & Iida, Shin’ichi & Nakai, Taro & Matsumoto, Kazuho & Komatsu, Hikaru & Otsuki, Kyoichi & Ohta, Takeshi, 2011. "Influences of canopy structure and physiological traits on flux partitioning between understory and overstory in an eastern Siberian boreal larch forest," Ecological Modelling, Elsevier, vol. 222(8), pages 1479-1490.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1479-1490
    DOI: 10.1016/j.ecolmodel.2011.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011000536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hata, Yoshiaki & Kumagai, Tomo'omi & Shimizu, Takanori & Miyazawa, Yoshiyuki, 2023. "Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation," Ecological Modelling, Elsevier, vol. 477(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:8:p:1479-1490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.