IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i18p3366-3379.html
   My bibliography  Save this article

Exploring the effects of reductions in krill biomass in the Southern Ocean on blue whales using a state-dependent foraging model

Author

Listed:
  • Wiedenmann, John
  • Cresswell, Katherine A.
  • Goldbogen, Jeremy
  • Potvin, Jean
  • Mangel, Marc

Abstract

Many species of baleen whales were hunted to near extinction in the Southern Hemisphere. The recovery of these populations will be affected by the availability of krill, a major dietary component, in the Southern Ocean. We combine a novel energetics model for baleen whales with a state dependent foraging model to explore the impacts of an expanding krill fishery on baleen whales. We parameterize the model for blue whales, but with simple modifications it could be applied to most baleen whales. We predict that an expanding fishery will have a small but significant impact on the blue whale population through decreased birth rates. However, spreading the catch limit throughout the range of krill can reduce these effects. In addition, whales may be able to reduce these impacts through adaptive changes in foraging behavior. The relationship between krill abundance and blue whale foraging and reproductive success is nonlinear, such that larger reductions in krill biomass, potentially following a loss of sea ice due to climate change, could have a much larger negative impact on the recovery of blue whales.

Suggested Citation

  • Wiedenmann, John & Cresswell, Katherine A. & Goldbogen, Jeremy & Potvin, Jean & Mangel, Marc, 2011. "Exploring the effects of reductions in krill biomass in the Southern Ocean on blue whales using a state-dependent foraging model," Ecological Modelling, Elsevier, vol. 222(18), pages 3366-3379.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:18:p:3366-3379
    DOI: 10.1016/j.ecolmodel.2011.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011003838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas Doniol-Valcroze & VĂ©ronique Lesage & Janie Giard & Robert Michaud, 2011. "Optimal foraging theory predicts diving and feeding strategies of the largest marine predator," Behavioral Ecology, International Society for Behavioral Ecology, vol. 22(4), pages 880-888.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anderson, James J. & Gurarie, Eliezer & Bracis, Chloe & Burke, Brian J. & Laidre, Kristin L., 2013. "Modeling climate change impacts on phenology and population dynamics of migratory marine species," Ecological Modelling, Elsevier, vol. 264(C), pages 83-97.
    2. Beltran, Roxanne S. & Testa, J. Ward & Burns, Jennifer M., 2017. "An agent-based bioenergetics model for predicting impacts of environmental change on a top marine predator, the Weddell seal," Ecological Modelling, Elsevier, vol. 351(C), pages 36-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:18:p:3366-3379. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.