IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i17p3092-3102.html
   My bibliography  Save this article

Incorporating dormancy in dynamic microbial community models

Author

Listed:
  • Stolpovsky, Konstantin
  • Martinez-Lavanchy, Paula
  • Heipieper, Hermann J.
  • Van Cappellen, Philippe
  • Thullner, Martin

Abstract

Biogeochemical activity in natural and engineered systems depends on the abundances, functional capabilities and physiological states of the indigenous microorganisms. Typically, only a fraction of the microbial population is active at any given time. As environmental conditions change, previously active microorganisms may switch to an inactive or dormant state, while dormant ones may become active. Here, we present an extended modeling concept for the growth and decay of microorganisms that explicitly accounts for their ability to switch between active and dormant states. The equations describing the switching between physiological states are implemented into a biogeochemical reaction simulator. The model was used to reproduce published data from two laboratory experiments in which microorganisms were subjected to intermittent substrate supply or reactivated after a prolonged period of starvation. Parameter values obtained from the simulation of these experiments were used for subsequent sensitivity analyses and for the simulation of hypothetical scenarios. Results for hypothetical microbial communities consisting of two competing species exposed to periodic feeding imply that, under certain conditions, an effective dormancy-reactivation strategy may have a competitive advantage over a fast growth strategy. That is, organisms that can switch rapidly in response to fluctuations in external conditions may outcompete fast-growing organisms. Furthermore, certain combinations of growth and dormancy strategies may lead to the long-term coexistence of the two competing species. Overall, the simulated population dynamics show that dormancy is an important feature of microbial communities, which can lead to complex responses to environmental fluctuations.

Suggested Citation

  • Stolpovsky, Konstantin & Martinez-Lavanchy, Paula & Heipieper, Hermann J. & Van Cappellen, Philippe & Thullner, Martin, 2011. "Incorporating dormancy in dynamic microbial community models," Ecological Modelling, Elsevier, vol. 222(17), pages 3092-3102.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:17:p:3092-3102
    DOI: 10.1016/j.ecolmodel.2011.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011003760
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Axel Schippers & Lev N. Neretin & Jens Kallmeyer & Timothy G. Ferdelman & Barry A. Cragg & R. John Parkes & Bo B. Jørgensen, 2005. "Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria," Nature, Nature, vol. 433(7028), pages 861-864, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fowler, A.C. & Winstanley, H.F., 2018. "Microbial dormancy and boom-and-bust population dynamics under starvation stress," Theoretical Population Biology, Elsevier, vol. 120(C), pages 114-120.
    2. Chapwanya, Michael & Dumani, Phindile, 2023. "Spatio-temporal dynamics of microbial population under nutrient-limiting conditions," Applied Mathematics and Computation, Elsevier, vol. 456(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martins, Irene & Colaço, Ana & Dando, Paul R. & Martins, Inês & Desbruyères, Daniel & Sarradin, Pierre-Marie & Marques, João Carlos & Serrão-Santos, Ricardo, 2008. "Size-dependent variations on the nutritional pathway of Bathymodiolus azoricus demonstrated by a C-flux model," Ecological Modelling, Elsevier, vol. 217(1), pages 59-71.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:17:p:3092-3102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.