IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i24p2938-2948.html
   My bibliography  Save this article

Modeling net primary production of a fast-growing forest using a light use efficiency model

Author

Listed:
  • Huang, Ni
  • Niu, Zheng
  • Wu, Chaoyang
  • Tappert, Michelle Coreena

Abstract

As interest grows in the quantification of global carbon cycles, Light Use Efficiency (LUE) model predictions of the forest net primary production (NPP) are being developed at an accelerating rate. Such models can provide useful predictions at large scales, but evaluating their performance has been difficult. In this study, a remote sensing-based LUE model was established to estimate forest NPP. Using the forest inventory data (FID) from the regional forest inventory survey in China and established allometric biomass equations, we calculated the biomass, the biomass increment, and the NPP of Eucalyptus urophylla (E. urophylla) plantation plots in the forestry jurisdiction of the Leizhou Forestry Bureau, Southern China. The FID-based NPP and the NPP from LUE model predictions were then compared to each other. Results show that the NPP from model predictions at a spatial resolution of 30m×30m varied from 0 to 265gC/(m2 month) and showed regional differences. In addition, the stand age had variable effects on the average individual biomass of the E. urophylla plantation plots. The average individual biomass of the young and mid-age forests increased exponentially and logarithmically with the stand age (R2=0.9178 and R2=0.8683), respectively. For young and mid-age E. urophylla plantation plots, the LUE model-predicted NPP was fairly consistent with the FID-based NPP, but the model predictions of the NPP were higher than the estimates from FID. Through the analysis of the causes of uncertainty and the possible reasons for the discrepancy between the model-based NPP and FID-based NPP, the FID-derived estimates provided a foundation for model evaluation.

Suggested Citation

  • Huang, Ni & Niu, Zheng & Wu, Chaoyang & Tappert, Michelle Coreena, 2010. "Modeling net primary production of a fast-growing forest using a light use efficiency model," Ecological Modelling, Elsevier, vol. 221(24), pages 2938-2948.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:24:p:2938-2948
    DOI: 10.1016/j.ecolmodel.2010.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Cho-ying & Asner, Gregory P. & Barger, Nichole N., 2012. "Modeling regional variation in net primary production of pinyon–juniper ecosystems," Ecological Modelling, Elsevier, vol. 227(C), pages 82-92.
    2. Wang, Chunli & Jiang, Qun'ou & Engel, Bernard & Mercado, Johann Alexander Vera & Zhang, Zhonghui, 2020. "Analysis on net primary productivity change of forests and its multi–level driving mechanism – A case study in Changbai Mountains in Northeast China," Technological Forecasting and Social Change, Elsevier, vol. 153(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:24:p:2938-2948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.