IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i17p2038-2053.html
   My bibliography  Save this article

Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses

Author

Listed:
  • Di Vittorio, Alan V.
  • Anderson, Ryan S.
  • White, Joseph D.
  • Miller, Norman L.
  • Running, Steven W.

Abstract

Extrapolating simulations of bioenergy crop agro-ecosystems beyond data-rich sites requires biophysically accurate ecosystem models and careful estimation of model parameters not available in the literature. To increase biophysical accuracy we added C4 perennial grass functionality and agricultural practices to the Biome-BGC (BioGeochemical Cycles) ecosystem model. This new model, Agro-BGC, includes enzyme-driven C4 photosynthesis, individual live and dead leaf, stem, and root carbon and nitrogen pools, separate senescence and litter fall processes, fruit growth, optional annual seeding, flood irrigation, a growing degree day phenology with a killing frost option, and a disturbance handler that simulates nitrogen fertilization, harvest, fire, and incremental irrigation. To obtain spatially generalizable vegetation parameters we used a numerical method to optimize five unavailable parameters for Panicum virgatum (switchgrass) using biomass yield data from three sites: Mead, Nebraska, Rockspring, Pennsylvania, and Mandan, North Dakota. We then verified simulated switchgrass yields at three independent sites in Illinois (IL). Agro-BGC is more accurate than Biome-BGC in representing the physiology and dynamics of C4 grass and management practices associated with agro-ecosystems. The simulated two-year average mature yields with single-site Rockspring optimization have Root Mean Square Errors (RMSE) of 70, 152, and 162 and biases of 43, −87, 156gcarbonm−2 for Shabbona, Urbana, and Simpson IL, respectively. The simulated annual yields in June, August, October, December, and February have RMSEs of 114, 390, and 185 and biases of −19, −258, and 147gcarbonm−2 for Shabbona, Urbana, and Simpson IL, respectively. These RMSE and bias values are all within the largest 90% confidence interval around respective IL site measurements. Twenty-four of twenty-six simulated annual yields with Rockspring optimization are within 95% confidence intervals of Illinois site measurements during the mature fourth and fifth years of growth. Ten of eleven simulated two-year average mature yields with Rockspring optimization are within 65% confidence intervals of Illinois site measurements and the eleventh is within the 95% confidence interval. Rockspring optimized Agro-BGC achieves accuracies comparable to those of two previously published models: Agricultural Land Management Alternatives with Numerical Assessment Criteria (ALMANAC) and Integrated Farm System Model (IFSM). Agro-BGC suffers from static vegetation parameters that can change seasonally and as plants age. Using mature plant data for optimization mitigates this deficiency. Our results suggest that a multi-site optimization scheme using mature plant data from more sites would be adequate for generating spatially generalizable vegetation parameters for simulating mature bioenergy crop agro-ecosystems with Agro-BGC.

Suggested Citation

  • Di Vittorio, Alan V. & Anderson, Ryan S. & White, Joseph D. & Miller, Norman L. & Running, Steven W., 2010. "Development and optimization of an Agro-BGC ecosystem model for C4 perennial grasses," Ecological Modelling, Elsevier, vol. 221(17), pages 2038-2053.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:17:p:2038-2053
    DOI: 10.1016/j.ecolmodel.2010.05.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010002656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.05.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corson, Michael S. & Rotz, C. Alan & Skinner, R. Howard, 2007. "Evaluating warm-season grass production in temperate-region pastures: A simulation approach," Agricultural Systems, Elsevier, vol. 93(1-3), pages 252-268, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hidy, D. & Barcza, Z. & Haszpra, L. & Churkina, G. & Pintér, K. & Nagy, Z., 2012. "Development of the Biome-BGC model for simulation of managed herbaceous ecosystems," Ecological Modelling, Elsevier, vol. 226(C), pages 99-119.
    2. Hunt, Natalie D. & Gower, Stith T. & Nadelhoffer, Knute & Lajtha, Kate & Townsend, Kimberly & Brye, Kristofor R., 2016. "Validation of an agroecosystem process model (AGRO-BGC) on annual and perennial bioenergy feedstocks," Ecological Modelling, Elsevier, vol. 321(C), pages 23-34.
    3. Ma, Shaoxiu & Churkina, Galina & Wieland, Ralf & Gessler, Arthur, 2011. "Optimization and evaluation of the ANTHRO-BGC model for winter crops in Europe," Ecological Modelling, Elsevier, vol. 222(20), pages 3662-3679.
    4. Sun, Qingling & Li, Baolin & Zhang, Tao & Yuan, Yecheng & Gao, Xizhang & Ge, Jinsong & Li, Fei & Zhang, Zhijun, 2017. "An improved Biome-BGC model for estimating net primary productivity of alpine meadow on the Qinghai-Tibet Plateau," Ecological Modelling, Elsevier, vol. 350(C), pages 55-68.
    5. Bodin, P. & Olin, S. & Pugh, T.A.M. & Arneth, A., 2016. "Accounting for interannual variability in agricultural intensification: The potential of crop selection in Sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 148(C), pages 159-168.
    6. Jakubowski, Wojciech & Szulczewski, Wiesław & Żyromski, Andrzej & Biniak-Pieróg, Małgorzata, 2016. "The estimation of basket willow (Salix viminalis) yield – New approach, Part II: Theoretical model and its practical application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 843-851.
    7. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corson, Michael S. & Alan Rotz, C. & Howard Skinner, R. & Sanderson, Matt A., 2007. "Adaptation and evaluation of the integrated farm system model to simulate temperate multiple-species pastures," Agricultural Systems, Elsevier, vol. 94(2), pages 502-508, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:17:p:2038-2053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.