IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i12p1644-1647.html
   My bibliography  Save this article

Energy conservation in hibernating endotherms: Why “suboptimal” temperatures are optimal

Author

Listed:
  • Boyles, Justin G.
  • McKechnie, Andrew E.

Abstract

Many endotherms use facultative heterothermic responses of torpor or hibernation to conserve energy during periods of low energy availability. A common assumption when estimating winter energy budgets is that endotherms should hibernate at the ambient temperature (Ta) that minimizes torpid metabolic rate (TMR) and maximizes the duration of torpor bouts. However, previous studies of the energetic benefits of hibernation have assumed constant Ta within hibernacula. Here we use an individual-based energetic model to estimate overwinter energy expenditure of mammals hibernating at Tas that vary temporally. We show that, in accordance with the principles of Jenson's inequality, hibernators can conserve energy by selecting microclimates warmer than the single Ta value that minimizes TMR (Tmin). As temporal variation in Ta increases, endotherms should choose microclimates with mean Tas progressively warmer than Tmin. Further, as thermal conductance decreases, as it does with increasing body mass and use of social thermoregulation, the mean Ta that minimizes overwinter energy expenditure approaches, but never equals, Tmin. We suggest that the commonly held assumption of stable microclimates in hibernacula has skewed the interpretation of the optimal expression of hibernation for energy conservation. Our results contradict much of the accepted understanding of hibernation energetics and add to a growing body of literature proposing that hibernating at a Ta warmer than Tmin is optimal.

Suggested Citation

  • Boyles, Justin G. & McKechnie, Andrew E., 2010. "Energy conservation in hibernating endotherms: Why “suboptimal” temperatures are optimal," Ecological Modelling, Elsevier, vol. 221(12), pages 1644-1647.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:12:p:1644-1647
    DOI: 10.1016/j.ecolmodel.2010.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010001638
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Murray M. Humphries & Donald W. Thomas & John R. Speakman, 2002. "Climate-mediated energetic constraints on the distribution of hibernating mammals," Nature, Nature, vol. 418(6895), pages 313-316, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iwona Gottfried & Tomasz Gottfried & Grzegorz Lesiński & Grzegorz Hebda & Maurycy Ignaczak & Grzegorz Wojtaszyn & Mirosław Jurczyszyn & Maciej Fuszara & Elżbieta Fuszara & Witold Grzywiński & Grzegorz, 2020. "Long-term changes in winter abundance of the barbastelle Barbastella barbastellus in Poland and the climate change – Are current monitoring schemes still reliable for cryophilic bat species?," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:12:p:1644-1647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.